Modern GPU Architectures

Varun Sampath
University of Pennsylvania
CIS 565 - Spring 2012

Agenda/GPU Decoder Ring

Fermi / GF100 / GeForce GTX 480

— “Fermi Refined” / GF110 / GeForce GTX 580

— “Little Fermi” / GF104 / GeForce GTX 460

Cypress / Evergreen / RV870 / Radeon HD 5870

— Cayman / Northern Islands / Radeon HD 6970

Tahiti / Southern Islands / GCN / Radeon HD 7970
Kepler / GK104 / GeForce GTX 680

Future

— Project Denver

— Heterogeneous System Architecture

From G80/GT200 to Fermi

* GPU Compute becomes a driver for innovation
— Unified address space
— Control flow advancements
— Arithmetic performance
— Atomics performance
— Caching
— ECC (is this seriously a graphics card?)
— Concurrent kernel execution & fast context
switching

Unified Address Space

Separate Address Spaces

1
*p_global

Unified Address Space

p Unified Pointer Reference

¢ PTX 2.0 ISA supports 64-bit virtual addressing (40-bit in Fermi)
* CUDA 4.0+: Address space shared with CPU
* Advantages?

Image from NVIDIA

4/22/12

Unified Address Space

cudaMemcpy (d_buf, h buf, sizeof (h buf),
cudaMemcpyDefault)

* Runtime manages where buffers live

* Enables copies between different devices (not
only GPUs) via DMA
— Called GPUDirect
— Useful for HPC clusters

* Pointers for global and shared memory are
equivalent

Control Flow Advancements

* Predicated instructions

— avoid branching stalls (no branch predictor)
* Indirect function calls:

call{.uni} fptr, flist;
* What does this enable support for?

Control Flow Advancements

* Predicated instructions
— avoid branching stalls (no branch predictor)
* Indirect function calls:
call{.uni} fptr, flist;
* What does this enable support for?
— Function pointers
— Virtual functions
— Exception handling
* Fermi gains support for recursion

Arithmetic

* Improved support for IEEE 754-2008 floating
point standards

* Double precision performance at half-speed
* Native 32-bit integer arithmetic
* Does any of this help for graphics code?

4/22/12

Cache Hierarchy

* 64KB L1 cache per SM
— Split into 16KB and 48KB pieces

— Developer chooses whether shared memory or
cache gets larger space

* 768KB L2 cache per GPU
— Makes atomics really fast. Why?
— 128B cache line
— Loosens memory coalescing constraints

The Fermi SM

Dual warp
schedulers — why?
Two banks of 16
CUDA cores, 16
LD/ST units, 4 SFU
units

I

A warp can now
complete as
quickly as 2 cycles

Image from NVIDIA Fermi Streaming Multiprocessor (SM)

The Stats

GPU G8o GT200 GF100
Transistors 681 million 1.4 billion 3.0 billion
CUDA Cores 128 240 512

Double Precision Floating Point None 30 FMA ops / clock 256 FMA ops /clock

Single Precision Floating Point 128 MAD ops/clock 240 MAD ops / clock 512 FMA ops /clock

Special Function Units / SM 4

Warp schedulers (per SM) 2

Shared Memory (per SM) Configurable 48 KB
or 16 KB

L1 Cache (per SM) Configurable 16 KB
or 48 KB
L2 Cache 768 KB

ECC Memory Support Yes
Concurrent Kernels Upto 16
Load/Store Address Width 64-bit

Image from Stanford CS193g

The Review in March 2010

* Compute performance unbelievable, gaming

performance on the other hand...

— “The GTX 480... it’s hotter, it’s noisier, and it’s
more power hungry, all for 10-15% more
performance.” — AnandTech (article titled “6
months late, was it worth the wait?”)

Massive 550mm? die
— Only 14/16 SMs could be enabled (480/512 cores)

4/22/12

“Fermi Refined” — GTX 580

¢ All 32-core SMs enabled
* Clocks ~10% higher

* Transistor mix enables lower power
consumption

“Little Fermi” — GTX 460

Smaller memory
bus (256-bit vs

Issue 1a Issue 1b Issue 2a Issue 2b.

Hil

H

384-bit)

Much lower ! _él-l-é
transistor count ﬁ ==N- -0 - k=
(1.95B) === =)= - - =
Superscalar EEEEEEE - =
execution: one BE BE BE B=
;cheduler dual- ~-N=--R-]-] =
ISSU€s EEEEEEE - =
Reduceoverhead D BE EEEZ @S
per core? (= [=N==F= - R - B=

3
B
&
®
S
3
>
1
2
5
2
=1
5
=3

A 2010 Comparison
NVIDIA GeForce GTX 480 ATI Radeon HD 5870
* 480 cores * 1600 cores
* 177.4 GB/s memory * 153.6 GB/s memory
bandwidth bandwidth

* 1.34 TFLOPS single
precision

* 3 billion transistors

* 2.72 TFLOPS single
precision

* 2.15 billion transistors

Over double the FLOPS for less transistors! What is

going on here?

VLIW Architecture

Very-Long-Instruction-
Word

Each instruction clause Streaming Processor (SP)
contains up to 5
instructions for the ALUs
to execute in parallel
Save on scheduling and
interconnect (clause
“packing” done by
compiler)
Utilization

Image from AnandTech

4/22/12

One Thread of Instructions

EEEOEEREEOOOONEEECON

]
Last Instruction]

]
EEEE

First Instruction

On

]
]
0@
o]

1]
L]
]

SP

AMD's RV770

m ENEEEOEEENOOOONEEN

NVIDIA's GT200

Execution Comparison

Image from AnandTech

Assembly Example

AMD VLIW IL NVIDIA PTX

MULLO_INT
ADD_INT
MULLO_INT
ADD_INT
ADD_INT

\ND_INT
AND INT

t:
t:
X!
W'
Y.
7"
¥
X
W

The Rest of
Cypress

e 16 Streaming
Processors packed
into SIMD Core/
compute unit (CU)
— Execute a

“wavefront” (a 64-
thread warp) over 4
cycles

* 20CUs *16SPs *5
ALUs = 1600 ALUs

Image from AnandTech

Performance Notes

* VLIW architecture relies on instruction-level
parallelism

* Excels at heavy floating-point workloads with low
register dependencies
— Shaders?

* Memory hierarchy not as aggressive as Fermi
— Read-only texture caches

— Can’t feed all of the ALUs in an SP in parallel
* Fewer registers per ALU
* Lower LDS capacity and bandwidth per ALU

4/22/12

Black-Scholes OpenCL Performance with work-group size

of 256 and processing of 8 million options
0.005

0.0045 \
0.004

0.0025 @=ftermi
@=Barts

16384 32768 49152 65536
Number of Work-ltems

SAT OpenCL Performance with work-group size of 256
0.14

o
e
N

o
e

o
o
®©

@=ftermi
@=Barts

Execution Time (s)
© o o
o o o
N s o

o

256x256 512x512 1024x1024 2048x2048
Problem Size

Optimizing for AMD Architectures

Many of the ideas are the same — the constants &
names just change

— Staggered Offsets (Partition camping)

— Local Data Share (shared memory) bank conflicts

— Memory coalescing

— Mapped and pinned memory

— NDRange (grid) and work-group (block)sizing

— Loop Unrolling

Big change: be aware of VLIW utilization

Consult the OpenCL Programming Guide

AMD’s Cayman Architecture — A Shift

* AMD found average VLIW utilization in games
was 3.4/5

Shift to VLIW4 architecture

* Increased SIMD core count at expense of
VLIW width

¢ Found in Radeon HD 6970 and 6950

4/22/12

Paradigm Shift — Graphics Core Next

¢ Switch to SIMD-based instruction set architecture
(no VLIW)

— 16-wide SIMD units executing a wavefront
— 4 SIMD units + 1 scalar unit per compute unit
— Hardware scheduling
* Memory hierarchy improvements
— Read/write L1 & L2 caches, larger LDS
* Programming goodies

— Unified address space, exceptions, functions,
recursion, fast context switching

* Sound Familiar?

COMPUTE UNIT ARCHITECTURE Input Data: PC/St

] B
SIM = Branch &

MSG Unit
Export/GDS Decode

= Veclor Memory Decode ¢y e s s ey
. L Scalar Unit SIMDO SIMD1 SIMD2 SIMD3
Decode 8 KB Registers 64KB _ B4KB _ 64KB 64KE
Registers “ Registers ™ Registers ™ Registers
3 3 3 WP

Vector Vector Vector Vector
ALl ALU ALU 16KB

Vector n

Decode

Uonelgly uoRonsu|

-
=
s
£
<
]
8

[
w

-
S
S

c
B
=

DS 64 KB LDS Memory

Decode

4 CU Shared 16KB Scalar Read Only L1
Ragst _

4CU Shared 32K8 Instruction L1~ <— A™®

1 »
10 | AMD Graphics Cors Next | Juno 2011 i 1* w00 o i pek SO

Radeon HD 7970: 32 CUs * 4 SIMDs/CU * 16 ALUs/SIMD = 2048 ALUs

Image from AMD

RIW
Integer ALU — dﬁa = R/W L2

Utilization and Efficiency

Higher utilization = higher performance persq.mm

GFLOPS increase (1.4 tilization improvement

SmallptGPU
Luxiark
SHA256
AES256

Mandelbrot DP

Image from AMD

NVIDIA’s Kepler

NVIDIA GeForce GTX 680 NVIDIA GeForce GTX 580

* 1536 SPs * 512 SPs

* 28nm process * 40nm process

e 192.2 GB/s memory e 192.4 GB/s memory
bandwidth bandwidth

* 195W TDP * 244WTDP

* 1/24 double performance * 1/8 double performance

* 3.5 billion transistors * 3 billion transistors

* Afocus on efficiency
* Transistor scaling not enough to account for massive
core count increase or power consumption
* Kepler die size 56% of GF110’s

4/22/12

Kepler’s SMX

* Removal of shader clock
means warp executes in 1 GPU
clock cycle
— Need 32 SPs per clock
— Ideally 8 instructions issued

every cycle (2 for each of 4
warps)

* Kepler SMX has 6x SP count
— 192 SPs, 32 LD/ST, 32 SFUs
— New FP64 block

* Memory (compared to Fermi)

— register file size has only
doubled

— shared memory/L1 size is the
same

— L2 decreases

Image from NVIDIA

Performance

Compute: Civilization
Leaders

+ GTX 680 may =
be compute AMD Radeon HD 7970
regression but
gaming leap

NVIDIA GeForce GTX 580
AMD Radeon HD 7950
'AMD Radeon HD 7870

o Y B | g Ke p |e r‘” NVIDIA GeForce GTX 680

expected to

remedy gap

— Double
performance
necessary

AMD Radeon HD 6990

NVIDIA GeForce GTX 590

NVIDIA GeForce GTX 680

AMD Radeon HD 7970

NVIDIA GeForce GTX 580

Images from AnandTech

Future: Integration

* Hardware benefits from merging CPU & GPU

— Mobile (smartphone / laptop): lower energy
consumption, area consumption

— Desktop / HPC: higher density, interconnect
bandwidth
* Software benefits

— Mapped pointers, unified addressing, consistency
rules, programming languages point toward GPU
as vector co-processor

The Contenders

* AMD — Heterogeneous System Architecture
— Virtual ISA, make use of CPU or GPU transparent

— Enabled by Fusion APUs, blending x86 and AMD
GPUs

* NVIDIA — Project Denver

— Desktop-class ARM processor effort
— Target server/HPC market?

* |ntel

— Larrabee Intel MIC

4/22/12

References

NVIDIA Fermi Compute Architecture Whitepaper.

Link
NVIDIA GeForce GTX 680 Whitepaper. Link

Schroeder, Tim C. “Peer-to-Peer & Unified Virtual
Addressing” CUDA Webinar. Slides

AnandTech Review of the GTX 460. Link
AnandTech Review of the Radeon HD 5870. Link
AnandTech Review of the GTX 680. Link

AMD OpenCL Programming Guide (v 1.3f). Link

NVIDIA CUDA Programming Guide (v 4.2). Link

Bibliography

* Beyond3D’s Fermi GPU and Architecture
Analysis. Link

* RWT’s article on Fermi. Link

* AMD Financial Analyst Day Presentations. Link

4/22/12

