

Mobile GPUs

Varun Sampath University of Pennsylvania CIS 565 - Spring 2012

Agenda

- SoCs
- Case Studies
 - NVIDIA Tegra 2, Tegra 3
 - Imagination Technologies' PowerVR SGX Series5XT
 - Apple iPad (2012)
- Future
- Note about sources

Brief Discussion of ARM

- RISC CPU vendor that currently dominates mobile
- Mobile Designs: Cortex-A8, A9, A15
- Fabless Designer
 - Core Design Licensees
 - Architecture Licensees
 - · Qualcomm Scorpion/Krait
 - NVIDIA

The Constraints of Mobile

- Energy
 - Cell phone battery capacity of 5-7 Wh (tablets 20-40 Wh)
 - How much energy can our chips consume?
- Area
 - PCB size constraints
 - Cooling constraints

Some Energy Numbers				
Power Consumption Comparison				
	Apple iPhone 4 (AT&T)	Apple iPhone 4S (AT&T)		
Idle	0.7W	0.7W		
Launch Safari	0.9W	0.9W		
Load AnandTech.com	1.0W	1.1W		
Maps (Determine Current Location via GPS/WiFi)	1.3W	1.4W		
Power Consumption Comparison				
	Apple iPhone 4 (AT&T)	Apple iPhone 4S (AT&T)		
Launch Infinity Blade	2.2W	2.6W		
Infinity Blade (Opening Scene, Steady State)	2.0W	2.2W		
		Data from <u>AnandTech</u>		

Some Contributors to Switching Energy

- Off-chip Interconnect (to DRAM)
 - Bandwidth is expensive
 - Minimize reasons to fire up memory bus
- High frequencies
 - Requires increased voltages

Some Theoretical Performance Numbers

	Apple iPad 2	ASUS Transformer Prime	Some Nice Desktop
CPU	A5 @ 1GHz	Tegra 3 @ 1.4GHz	Sandy Bridge @ 3.4GHz
GPU	POWERVR SGX543MP2 @ 250MHz	Mobile GeForce @ 500MHz	GTX680 @ 1GHz
Memory Interface	64-bit @ (maybe) 800MHz = 6.4GB/s	32-bit	256-bit @ 6GHz = 192GB/s
GPU GFLOPS	16 GFLOPS	12 GFLOPS	3 TFLOPS

Mobile Data from AnandTech GTX680 Specs from Newegg

GeForce GPU in NVIDIA Tegra 2

Tegra 2 Mobile GeForce

- Separate vertex and pixel shaders
 - 4 of each, each capable of 1 multiply-add /clock
- Pixel, texture, vertex, and attribute caches
 - Reduce memory transactions
 - Pixel cache useful for UI components
- Memory controller optimizations
 - Arbitrate between CPU & GPU requests
 - Reorder requests to limit bank switching

NVIDIA Tegra 3 (Kal-El) • Expanded Mobile GeForce - 4 vertex and 8 pixel shaders • 4-PLUS-1 architecture

Summarizing PowerVR SGX Series5XT

- Used in Apple A5, A5X
- Unified shader architecture (called USSE2)
- Tile based deferred rendering (TBDR)
 - Will cover in more detail next week
- Multi-core architecture

Mobile GPU Families

- · Qualcomm Adreno
 - Unified shaders, 4-wide SIMD
 - immediate mode with early-z
- Imagination Technologies' PowerVR SGX Series5XT
 - Unified shaders, 4-wide SIMD
 - Tile based deferred rendering
- NVIDIA Mobile GeForce
 - Separate vertex (4) & pixel (8/12) shaders, scalar
 - immediate mode with early-z
- ARM Mali
 - Separate vertex (1) & pixel (4) shaders , 4/2-wide SIMD
 - immediate mode with early-z

Analysis by AnandTech

Demands for Mobile

- Higher screen resolutions
 - Requires more memory bandwidth
 - Pixel count growing higher than geometry?
- Longer battery life
- · Higher quality mobile gaming

Case Study: the new iPad

- Screen resolution of 2048x1536
 - Quadruple the pixels of previous 1024x768 version
 - Higher than nearly all desktop and laptop displays
- Battery life approximately equal to previous version
- Gaming performance?

What will the future bring?

- GPU Compute
 - PowerVR SGX Series5XT OpenCL capable, but no drivers
 - Could do compute the <u>old-fashioned way</u> with GLSL
 - Direct3D 11 means Compute Shader support
- PowerVR Series6 <u>press release</u> suggests 100-1000 GFLOPS
- Kepler-based GPU coming to a <u>super phone</u> near you?

