
1

OpenGL Buffer Transfers

Patrick Cozzi
University of Pennsylvania
CIS 565 - Spring 2012

Drawing

� It doesn’t matter if we’re using:

� Efficiently transferring data between the
CPU and GPU is critical for performance.

How many vertices
per second do we

need?

Drawing

Image from http://graphics.cs.uni-sb.de/MassiveRT/boeing777.html

Boeing 777 model: ~350 million polygons

2

Drawing

Image from http://www.vision.ee.ethz.ch/~pmueller/wiki/CityEngine/Documents

Procedurally generated model of Pompeii: ~1.4 billion polygons

Buffer Objects

� Array buffers – store vertex attributes
� Element buffers – store indices
� Stored in driver-controlled memory, not an

array in our application
� Provide hints to the driver about how we

will use the buffer

Buffer Objects

GLuint vbo;

GLfloat* vertices = new GLfloat[3 * numberOfVertices];

glGenBuffers(1, &vbo);

glBindBuffer(GL_ARRAY_BUFFER_ARB, vbo);

glBufferData(GL_ARRAY_BUFFER_ARB, numberOfBytes, vertices, GL_STATIC_DRAW_ARB);

// Also check out glBufferSubData

delete [] vertices;

glDeleteBuffers(1, &vbo);

Buffer Objects

GLuint vbo;

GLfloat* vertices = new GLfloat[3 * numberOfVertices];

glGenBuffers(1, &vbo);

glBindBuffer(GL_ARRAY_BUFFER_ARB, vbo);

glBufferData(GL_ARRAY_BUFFER_ARB, numberOfBytes, vertices, GL_STATIC_DRAW_ARB);

// Also check out glBufferSubData

delete [] vertices;

glDeleteBuffers(1, &vbo);

3

Buffer Objects

GLuint vbo;

GLfloat* vertices = new GLfloat[3 * numberOfVertices];

glGenBuffers(1, &vbo);

glBindBuffer(GL_ARRAY_BUFFER_ARB, vbo);

glBufferData(GL_ARRAY_BUFFER_ARB, numberOfBytes, vertices, GL_STATIC_DRAW_ARB);

// Also check out glBufferSubData

delete [] vertices;

glDeleteBuffers(1, &vbo);

Buffer Objects

GLuint vbo;

GLfloat* vertices = new GLfloat[3 * numberOfVertices];

glGenBuffers(1, &vbo);

glBindBuffer(GL_ARRAY_BUFFER_ARB, vbo);

glBufferData(GL_ARRAY_BUFFER_ARB, numberOfBytes, vertices, GL_STATIC_DRAW_ARB);

// Also check out glBufferSubData

delete [] vertices;

glDeleteBuffers(1, &vbo); Copy from application to driver-controlled memory.
GL_STATIC_DRAW should imply video memory.

Buffer Objects

GLuint vbo;

GLfloat* vertices = new GLfloat[3 * numberOfVertices];

glGenBuffers(1, &vbo);

glBindBuffer(GL_ARRAY_BUFFER_ARB, vbo);

glBufferData(GL_ARRAY_BUFFER_ARB, numberOfBytes, vertices, GL_STATIC_DRAW_ARB);

// Also check out glBufferSubData

delete [] vertices;

glDeleteBuffers(1, &vbo); � Does glBufferData block?

� Does glBufferSubData block?

Buffer Objects

� Usage Hint
�Static: 1-to-n update-to-draw ratio
�Dynamic: n-to-m update to draw (n < m)
�Stream: 1-to-1 update to draw

� It’s a hint. Do drivers take it into
consideration?
�GL_ARB_debug_output tells us where the

buffer is stored

4

Layouts

Images from www.virtualglobebook.com

Separate Buffers

Non-interleaved Buffer

Interleaved Buffer

Layout Tradeoffs

� Separate Buffers
� Flexibility, e.g.:
� Combination of static and dynamic buffers

� Multiple objects share the same buffer

� Non-interleaved Buffer
� How is the memory coherence?

� Interleaved Buffer
� Faster for static buffers
� Proportional to the number of attributes

� Hybrid?

Vertex Throughput Tips

� Optimize for the Vertex Cache
� Use smaller vertices
�Use less precision, e.g., half instead of float

�Pack, then unpack in vertex shader
�Derive attributes or components from other

attributes
�How many components do you need to store a

normal?

Buffer Objects

Image from http://developer.nvidia.com/object/using_VBOs.html

Map a pointer to driver-controlled memory
• Also map just a subset of the buffer

5

DMA

Image from http://www.openglinsights.com/

� DMA – Direct Memory Access
� Asynchronously transfer buffer between CPU and

GPU

� Asynchronous with respect to the CPU, not always
the GPU

� How many copies are made?

Buffer Mapping

� Use glMapBuffer, glUnmapBuffer,
and friends to save a copy

� Pointer returned by glMapBuffer is valid
until glUnmapBuffer is called.

Image from http://developer.nvidia.com/object/using_VBOs.html

Buffer Mapping

Image from http://developer.nvidia.com/object/using_VBOs.html

Buffer Mapping

� Use glMapBufferRange to map a subset
of a buffer. Why?

6

Buffer Mapping

� Use glMapBufferRange to map a subset
of a buffer. Why?
�Only upload the portion of a buffer that changed
�Manual double buffering – use one half for

updating and the other for rendering

Implicit Synchronization

� Command queue
� Rendering may occur a frame or two later
� Helps hide latency
� However implicit synchronization can occur:

Image from http://developer.nvidia.com/object/using_VBOs.html

Implicit Synchronization

� Avoiding implicit synchronization
�Round-robin
�Orphan
�Manual synchronization

Implicit Synchronization

� Round-robin

Image from http://developer.nvidia.com/object/using_VBOs.html

7

Implicit Synchronization

� Orphan – round robin inside the driver?

Image from http://developer.nvidia.com/object/using_VBOs.html

Implicit Synchronization

� Use glMapBufferRange with
GL_MAP_UNSYNCHRONIZED_BIT
�Manually sync with glClientWaitSync

Image from http://developer.nvidia.com/object/using_VBOs.html

Implicit Synchronization

Image from http://developer.nvidia.com/object/using_VBOs.html

Other Buffer Objects

� Pixel Buffers
� Texture Buffers
� Uniform Buffers

� These are not in OpenGL ES 2.

