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Agenda

• Scale-up vs. scale-out

• GPU & scale-out (MPI)

• Introduction to MapReduce

• MapReduce & GPU
– Building a GPU MapReduce framework (UC Davis)
– Hadoop Pipes (Tokyo Institute of Tech.) 
– Hadoop streams (UIUC)



3

Scale-up vs. Scale-out



4

Scale-up vs. Scale-out
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How to leverage GPUs in scale-out architectures

• On foot
– Manage your own network connectivity, communication, 

data placement & movement, load balancing, fault 
tolerance, …

• MPI (Message passing interface)
– Focus on communication (RDMA support), still have to 

manage data handling, load balancing, fault tolerance, ...
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How to leverage GPUs in scale-out architectures
• On foot

– Manage your own network connectivity, communication, data 
placement & movement, load balancing, fault tolerance, …

• MPI (Message passing interface)
– Focus on communication (RDMA support), still have to 

manage data handling, load balancing, fault tolerance, ...
– GPUDirect (nVidia & Mellanox)

• Iinfiniband card and GPU share DMA/RDMA region
• v2 uses UVA to make remote memory access transparent 
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Agenda

• Scale-up vs. scale-out

• GPU & scale-out (MPI)

• Introduction to MapReduce

• MapReduce & GPU
– Building a GPU MapReduce framework (UC Davis)
– Hadoop Pipes (Tokyo Institute of Tech.) 
– Hadoop streams (UIUC)
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MapReduce

• Programming Model for Large-Volume Data Processing
• Specialized for frequent use case: aggregation queries

– Map every input object to set of key/value pairs
– Reduce (aggregate) all mapped values for same key into 

one result for that key
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MapReduce

• Programming Model for Large-Volume Data Processing
• Specialized for frequent use case: aggregation queries

– Map every input object to set of key/value pairs
– Reduce (aggregate) all mapped values for same key into 

one result for that key

• Use this structure as explicit API for cluster computing
– Submit jobs as (input data, map function, reduce 

function)
– Implementation details for given architecture can be 

hidden
– No need to manually implement parallelization, 

scheduling, fault tolerance, ...
– Dynamic resource allocation by MR framework without 

code changes
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Example – Word Frequency

map(String key, String value): 
// key: document name 
// value: document contents 
for each word w in value:
  EmitIntermediate(w, "1");

reduce(String key, Iterator values): 
// key: a word 
// values: a list of counts int result = 0;
for each v in values: 
  result += ParseInt(v);
  Emit(AsString(result));
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More Examples

• Grep
– Input: (many) text files
– Map: Emit line if matches
– Reduce: Concatenate intermediate results

• URL Access Frequency
– Input: Web server logs
– Map: <URL,1>
– Reduce: Add values for URL
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MapReduce Environment

• Commodity PC Machines
– Commodity CPU, Network, Storage
– Distributed File System (Replicated)

• Map/Reduce is framework (library)
• First described by Google

– Dean, Ghemawat: MapReduce: Simplified Data 
Processing on Large Clusters, OSDI 2004.

– Implemented in C++
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Google Implementation
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Fault Tolerance
• Master Data:

– For each task
• State: Complete / Idle / In-progress
• Assigned worker (for non-idle tasks)

– For each map task
• size and location of intermediate results for each reduce job
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Fault Tolerance
• Master Data:

– For each task
• State: Complete / Idle / In-progress
• Assigned worker (for non-idle tasks)

– For each map task
• size and location of intermediate results for each reduce job

• Periodic Ping to Worker by Master
• Reply includes status information on pending tasks
• No reply:

– Reschedule all its incomplete tasks
– Also reschedule completed map tasks of that worker, 

results are inaccessible
– Completed reduce tasks available in distributed file 

system
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Fault Tolerance cont.

• Slow machines can delay whole job
– faulty hard disks, faulty configuration
– answer to pings, but do not complete

• Near end of job
– process in-progress tasks redundantly
– remaining in-progress jobs likely to be “stragglers”
– redundant execution will overtake them
– if inherently slow, original execution finishes first
– typical results: 2x faster overall execution time
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Fault Tolerance cont.

• Slow machines can delay whole job
– faulty hard disks, faulty configuration
– answer to pings, but do not complete

• Near end of job
– process in-progress tasks redundantly
– remaining in-progress jobs likely to be “stragglers”
– redundant execution will overtake them
– if inherently slow, original execution finishes first
– typical results: 2x faster overall execution time

• What happens if the master crashes
– Re-execute entire job
– Unlikely as there is only 1 master per job
– Checkpointing possible to reclaim partial results
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MapReduce Scheduling

• Locality
– Input Locality

• Try to execute map jobs where data already is in DFS
– Output Locality

• User may specify reduce key-partitioning function
• Co-locates related output in same reducers
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MapReduce Scheduling

• Locality
– Input Locality

• Try to execute map jobs where data already is in DFS
– Output Locality

• User may specify reduce key-partitioning function
• Co-locates related output in same reducers

• Combiner
– For commutative and associative reducer functions
– “Pre-aggregation”: Aggregate in several stages
– Reduces network traffic
– Combiner tasks

• code typically same as reduce
• output is fed to other reduce/combine functions, not 

output files
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MapReduce Variants – Related Products

• Hadoop (Yahoo, Apache)
– Open-source Java implementation of Map/Reduce

• Sawzall (Google)
– Domain-specific programming language (DSL) for Map stage

• Pig Latin (Yahoo)
– DSL for large-volume processing jobs
– can be compiled into Map/Reduce jobs

• Hive (Facebook)
– Data warehouse
– SQL-like interface 

• Amazon EC2 (Elastic Cloud Computing)
– Rent machines by the hour, can be preloaded with Hadoop 

server images
– Nodes equipped with 2 Tesla M2050 available for $2.60/hr ...
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MapReduce & GPU

• MapReduce frameworks promise to sweeten the bitter taste 
of distributed programming by handling system tasks:
– communication, data placement & movement, load 

balancing, fault tolerance, …

• The de-facto standard

– Implemented in Java, but
• Can handle binaries
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MapReduce & GPU

• Mars
– frameworks for single CPU/GPU

• GPMR
– C++ MR implementation specifically for GPU clusters

• Extending Hadoop MR to GPUs
– Tokyo Institute of Technology
– MITHRA



26

GPMR

• A standalone MR library implemented in C/C++
– Allows native use of CUDA

• Starting with a naïve implementation:
– Copy input data to GPU
– Map, sort, reduce → kernel calls
– Copy data back

• What happens if the the amount of data > GPU memory?
• How to scale across nodes?

– Partitioning is required 
– Optimizations:

• Relax 1 thread to 1 work-item constraint
• Use combiners for all map jobs of a node
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GPMR

Phases
• Scheduler

= Master
• GPU map

= (CPU map) - sort
• GPU Partial Reduce 

= Combiner
• Partition defaults to 

RR
• Bin = Data tx
• Sort potentially 

executed on 
different node

• GPU Reduce = CPU 
reduce
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MR vs. GPMR

• Confused ?
– Many new stages
– All stages open to the 

programmer ...
• Wasn't MapReduce 

designed to be simple ? 
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GPMR - Evaluation

• 5 “common” benchmarks for MR clusters
– Matrix multiply
– Sparse integer occurrence
– Word occurrence
– K-Means clustering
– Linear Regression

• Demonstrate scalability
• Comparison with existing MR libraries

– Mars, single GPU
– Phoenix, multi-core CPU
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GPMR – Results

• C=A+B, use blocking to partition matrix
• C_block(1,1)=A_block(1,1)*B_block(1,1) + A_block(1,2)*B_block(2,1) + ...
• Each mapper processes a matrix multiplication for individual block(s)
• Reducer sums all sub-matrices.
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GPMR – Results

• String processing inefficient and mismatch for GPU
– Dictionary relatively small, 43k words
– Use integer hashing

• Use combiners to accumulate results
– Implemented using atomics
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GPMR – Results

• Comparison with MARS running on a single GPU

• Comparison with Phoenix running on 4 CPU cores

• Missing comparison with a “real” MR framework
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Extending Hadoop MR

• Hadoop is implemented in Java
• Options to interface with CUDA

– Hadoop Streaming – Unix streams with line-oriented or 
binary interface
• Works for any binary, but requires input parsing

– Hadoop Pipes – Unix sockets
• C++ Hadoop library provides k-v abstractions

– JNI
• Allows to invoke external apps and libraries in C, asm, ...
• Require platform specific libaries
• Access to Java data structures through JNI slow
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Tokyo Institure of Technology – Hadoop Pipes
• Hybrid approach

– CPU and GPU mappers
– Scheduling not affected
– Input/output formats unchanged
– Transparent on which hardware Job runs



35

K-Means

1) k initial "means" (k=3) 
randomly selected

2) k clusters by finding  
nearest mean

3) centroid of each 
clusters = new mean

4) Steps 2 and 3 are repeated until convergence, 
i.e. no more changes in assigments  
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K-Means on MapReduce

• Map Phase
– Load the cluster centers from a file
– Iterate over each cluster center for each input key/value pair 
– Measure the distances and save the nearest center which has 

the lowest distance to the vector
– Write the cluster center with its vector to the filesystem
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K-Means on MapReduce

• Map Phase
– Load the cluster centers from a file
– Iterate over each cluster center for each input key/value pair 
– Measure the distances and save the nearest center which has 

the lowest distance to the vector
– Write the cluster center with its vector to the filesystem

• Reduce Phase (we get associated vectors for each center)
– Iterate over each value vector and calculate the average vector 
– This is the new center, save it to a file
– Check the convergence between the cluster center that is 

stored in the key object and the new center
• Run this until nothing was updated anymore
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Tokyo Institure of Technology – K-Means Results 

20GB input data (2-dimensional points), K=128,

each node comprises 16 CPU cores, 32GB RAM, 2 GPUs
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MITHRA – Options pricing

• Multiple Data Independeed Tasks on Heterogenous 
Resource Architecture

• Uses CUDA SDK version of Black Scholes option pricing
•  Hadoop streams to distribute and execute the CUDA binary

– CPUs idle
• Combiners to aggregate local results
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Existing Approaches - issues

• GPMR
– Stand-alone library
– No Fault tolerance
– No DFS
– No communication handling (mapper – reducer)
– Not a complete Framework

• Tokyo Institute of Technology
– Single application – K-means
– Small problem set (20GB) does not scale beyond 16 nodes
– Cost of Hadoop streams

• MITHRA
– Single application – Options Pricing
– Scalability evaluated on 2 nodes
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