
Large-Scale GPU programming

Research Staff Member
Database Technologies
IBM Almaden Research Center
tkaldew@us.ibm.com

Tim Kaldewey

Assistant Adjunct Professor
Computer and Information Science Dept.
University of Pennsylvania
tim@kaldewey.com

2

Agenda

• Scale-up vs. scale-out

• GPU & scale-out (MPI)

• Introduction to MapReduce

• MapReduce & GPU
– Building a GPU MapReduce framework (UC Davis)
– Hadoop Pipes (Tokyo Institute of Tech.)
– Hadoop streams (UIUC)

3

Scale-up vs. Scale-out

4

Scale-up vs. Scale-out

5

How to leverage GPUs in scale-out architectures

• On foot
– Manage your own network connectivity, communication,

data placement & movement, load balancing, fault
tolerance, …

• MPI (Message passing interface)
– Focus on communication (RDMA support), still have to

manage data handling, load balancing, fault tolerance, ...

6

How to leverage GPUs in scale-out architectures

• On foot
– Manage your own network connectivity, communication, data

placement & movement, load balancing, fault tolerance, …
• MPI (Message passing interface)

– Focus on communication (RDMA support), still have to
manage data handling, load balancing, fault tolerance, ...

– GPUDirect (nVidia & Mellanox)

7

How to leverage GPUs in scale-out architectures
• On foot

– Manage your own network connectivity, communication, data
placement & movement, load balancing, fault tolerance, …

• MPI (Message passing interface)
– Focus on communication (RDMA support), still have to

manage data handling, load balancing, fault tolerance, ...
– GPUDirect (nVidia & Mellanox)

• Infiniband card and GPU share DMA/RDMA region

8

How to leverage GPUs in scale-out architectures
• On foot

– Manage your own network connectivity, communication, data
placement & movement, load balancing, fault tolerance, …

• MPI (Message passing interface)
– Focus on communication (RDMA support), still have to

manage data handling, load balancing, fault tolerance, ...
– GPUDirect (nVidia & Mellanox)

• Iinfiniband card and GPU share DMA/RDMA region
• v2 uses UVA to make remote memory access transparent

9

Agenda

• Scale-up vs. scale-out

• GPU & scale-out (MPI)

• Introduction to MapReduce

• MapReduce & GPU
– Building a GPU MapReduce framework (UC Davis)
– Hadoop Pipes (Tokyo Institute of Tech.)
– Hadoop streams (UIUC)

10

MapReduce

• Programming Model for Large-Volume Data Processing
• Specialized for frequent use case: aggregation queries

– Map every input object to set of key/value pairs
– Reduce (aggregate) all mapped values for same key into

one result for that key

11

MapReduce

• Programming Model for Large-Volume Data Processing
• Specialized for frequent use case: aggregation queries

– Map every input object to set of key/value pairs
– Reduce (aggregate) all mapped values for same key into

one result for that key

• Use this structure as explicit API for cluster computing
– Submit jobs as (input data, map function, reduce

function)
– Implementation details for given architecture can be

hidden
– No need to manually implement parallelization,

scheduling, fault tolerance, ...
– Dynamic resource allocation by MR framework without

code changes

12

Example – Word Frequency

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:
 EmitIntermediate(w, "1");

reduce(String key, Iterator values):
// key: a word
// values: a list of counts int result = 0;
for each v in values:
 result += ParseInt(v);
 Emit(AsString(result));

13

More Examples

• Grep
– Input: (many) text files
– Map: Emit line if matches
– Reduce: Concatenate intermediate results

• URL Access Frequency
– Input: Web server logs
– Map: <URL,1>
– Reduce: Add values for URL

14

MapReduce Environment

• Commodity PC Machines
– Commodity CPU, Network, Storage
– Distributed File System (Replicated)

• Map/Reduce is framework (library)
• First described by Google

– Dean, Ghemawat: MapReduce: Simplified Data
Processing on Large Clusters, OSDI 2004.

– Implemented in C++

15

Google Implementation

16

Fault Tolerance
• Master Data:

– For each task
• State: Complete / Idle / In-progress
• Assigned worker (for non-idle tasks)

– For each map task
• size and location of intermediate results for each reduce job

17

Fault Tolerance
• Master Data:

– For each task
• State: Complete / Idle / In-progress
• Assigned worker (for non-idle tasks)

– For each map task
• size and location of intermediate results for each reduce job

• Periodic Ping to Worker by Master
• Reply includes status information on pending tasks
• No reply:

– Reschedule all its incomplete tasks
– Also reschedule completed map tasks of that worker,

results are inaccessible
– Completed reduce tasks available in distributed file

system

18

Fault Tolerance cont.

• Slow machines can delay whole job
– faulty hard disks, faulty configuration
– answer to pings, but do not complete

• Near end of job
– process in-progress tasks redundantly
– remaining in-progress jobs likely to be “stragglers”
– redundant execution will overtake them
– if inherently slow, original execution finishes first
– typical results: 2x faster overall execution time

19

Fault Tolerance cont.

• Slow machines can delay whole job
– faulty hard disks, faulty configuration
– answer to pings, but do not complete

• Near end of job
– process in-progress tasks redundantly
– remaining in-progress jobs likely to be “stragglers”
– redundant execution will overtake them
– if inherently slow, original execution finishes first
– typical results: 2x faster overall execution time

• What happens if the master crashes
– Re-execute entire job
– Unlikely as there is only 1 master per job
– Checkpointing possible to reclaim partial results

20

MapReduce Scheduling

• Locality
– Input Locality

• Try to execute map jobs where data already is in DFS
– Output Locality

• User may specify reduce key-partitioning function
• Co-locates related output in same reducers

21

MapReduce Scheduling

• Locality
– Input Locality

• Try to execute map jobs where data already is in DFS
– Output Locality

• User may specify reduce key-partitioning function
• Co-locates related output in same reducers

• Combiner
– For commutative and associative reducer functions
– “Pre-aggregation”: Aggregate in several stages
– Reduces network traffic
– Combiner tasks

• code typically same as reduce
• output is fed to other reduce/combine functions, not

output files

22

MapReduce Variants – Related Products

• Hadoop (Yahoo, Apache)
– Open-source Java implementation of Map/Reduce

• Sawzall (Google)
– Domain-specific programming language (DSL) for Map stage

• Pig Latin (Yahoo)
– DSL for large-volume processing jobs
– can be compiled into Map/Reduce jobs

• Hive (Facebook)
– Data warehouse
– SQL-like interface

• Amazon EC2 (Elastic Cloud Computing)
– Rent machines by the hour, can be preloaded with Hadoop

server images
– Nodes equipped with 2 Tesla M2050 available for $2.60/hr ...

23

Agenda

• Scale-up vs. scale-out

• GPU & scale-out (MPI)

• Introduction to MapReduce

• MapReduce & GPU
– Building a GPU MapReduce framework (UC Davis)
– Hadoop Pipes (Tokyo Institute of Tech.)
– Hadoop streams (UIUC)

24

MapReduce & GPU

• MapReduce frameworks promise to sweeten the bitter taste
of distributed programming by handling system tasks:
– communication, data placement & movement, load

balancing, fault tolerance, …

• The de-facto standard

– Implemented in Java, but
• Can handle binaries

25

MapReduce & GPU

• Mars
– frameworks for single CPU/GPU

• GPMR
– C++ MR implementation specifically for GPU clusters

• Extending Hadoop MR to GPUs
– Tokyo Institute of Technology
– MITHRA

26

GPMR

• A standalone MR library implemented in C/C++
– Allows native use of CUDA

• Starting with a naïve implementation:
– Copy input data to GPU
– Map, sort, reduce → kernel calls
– Copy data back

• What happens if the the amount of data > GPU memory?
• How to scale across nodes?

– Partitioning is required
– Optimizations:

• Relax 1 thread to 1 work-item constraint
• Use combiners for all map jobs of a node

27

GPMR

Phases
• Scheduler

= Master
• GPU map

= (CPU map) - sort
• GPU Partial Reduce

= Combiner
• Partition defaults to

RR
• Bin = Data tx
• Sort potentially

executed on
different node

• GPU Reduce = CPU
reduce

28

MR vs. GPMR

• Confused ?
– Many new stages
– All stages open to the

programmer ...
• Wasn't MapReduce

designed to be simple ?

29

GPMR - Evaluation

• 5 “common” benchmarks for MR clusters
– Matrix multiply
– Sparse integer occurrence
– Word occurrence
– K-Means clustering
– Linear Regression

• Demonstrate scalability
• Comparison with existing MR libraries

– Mars, single GPU
– Phoenix, multi-core CPU

30

GPMR – Results

• C=A+B, use blocking to partition matrix
• C_block(1,1)=A_block(1,1)*B_block(1,1) + A_block(1,2)*B_block(2,1) + ...
• Each mapper processes a matrix multiplication for individual block(s)
• Reducer sums all sub-matrices.

31

GPMR – Results

• String processing inefficient and mismatch for GPU
– Dictionary relatively small, 43k words
– Use integer hashing

• Use combiners to accumulate results
– Implemented using atomics

32

GPMR – Results

• Comparison with MARS running on a single GPU

• Comparison with Phoenix running on 4 CPU cores

• Missing comparison with a “real” MR framework

33

Extending Hadoop MR

• Hadoop is implemented in Java
• Options to interface with CUDA

– Hadoop Streaming – Unix streams with line-oriented or
binary interface
• Works for any binary, but requires input parsing

– Hadoop Pipes – Unix sockets
• C++ Hadoop library provides k-v abstractions

– JNI
• Allows to invoke external apps and libraries in C, asm, ...
• Require platform specific libaries
• Access to Java data structures through JNI slow

34

Tokyo Institure of Technology – Hadoop Pipes
• Hybrid approach

– CPU and GPU mappers
– Scheduling not affected
– Input/output formats unchanged
– Transparent on which hardware Job runs

35

K-Means

1) k initial "means" (k=3)
randomly selected

2) k clusters by finding
nearest mean

3) centroid of each
clusters = new mean

4) Steps 2 and 3 are repeated until convergence,
i.e. no more changes in assigments

36

K-Means on MapReduce

• Map Phase
– Load the cluster centers from a file
– Iterate over each cluster center for each input key/value pair
– Measure the distances and save the nearest center which has

the lowest distance to the vector
– Write the cluster center with its vector to the filesystem

37

K-Means on MapReduce

• Map Phase
– Load the cluster centers from a file
– Iterate over each cluster center for each input key/value pair
– Measure the distances and save the nearest center which has

the lowest distance to the vector
– Write the cluster center with its vector to the filesystem

• Reduce Phase (we get associated vectors for each center)
– Iterate over each value vector and calculate the average vector
– This is the new center, save it to a file
– Check the convergence between the cluster center that is

stored in the key object and the new center
• Run this until nothing was updated anymore

38

Tokyo Institure of Technology – K-Means Results

20GB input data (2-dimensional points), K=128,

each node comprises 16 CPU cores, 32GB RAM, 2 GPUs

39

MITHRA – Options pricing

• Multiple Data Independeed Tasks on Heterogenous
Resource Architecture

• Uses CUDA SDK version of Black Scholes option pricing
• Hadoop streams to distribute and execute the CUDA binary

– CPUs idle
• Combiners to aggregate local results

40

Existing Approaches - issues

• GPMR
– Stand-alone library
– No Fault tolerance
– No DFS
– No communication handling (mapper – reducer)
– Not a complete Framework

• Tokyo Institute of Technology
– Single application – K-means
– Small problem set (20GB) does not scale beyond 16 nodes
– Cost of Hadoop streams

• MITHRA
– Single application – Options Pricing
– Scalability evaluated on 2 nodes

41

References

J. Dean and S. Ghemawat. MapReduce: Simplified Data
Processing on Large Clusters. OSDI'04

J. Stuart and J. Owens. Multi-GPU MapReduce on GPU
Clusters. IPDPS'11

R. Favriar, A. Verma, E.Chan, R. Campbell. MITHRA: Multiple
data independent Tasks on a Heterogeneous Resource
Architecture. CLUSTER'09

K. Shirahata, H. Sato, S. Matsuoka. Hybrid Map Task Scheduling
for GPU-Based Heterogeneous Clusters. CloudCom'10

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

