Large-Scale GPU programming

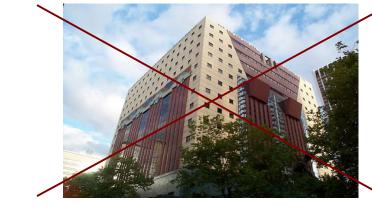
Tim Kaldewey

Research Staff Member Database Technologies IBM Almaden Research Center *tkaldew@us.ibm.com*

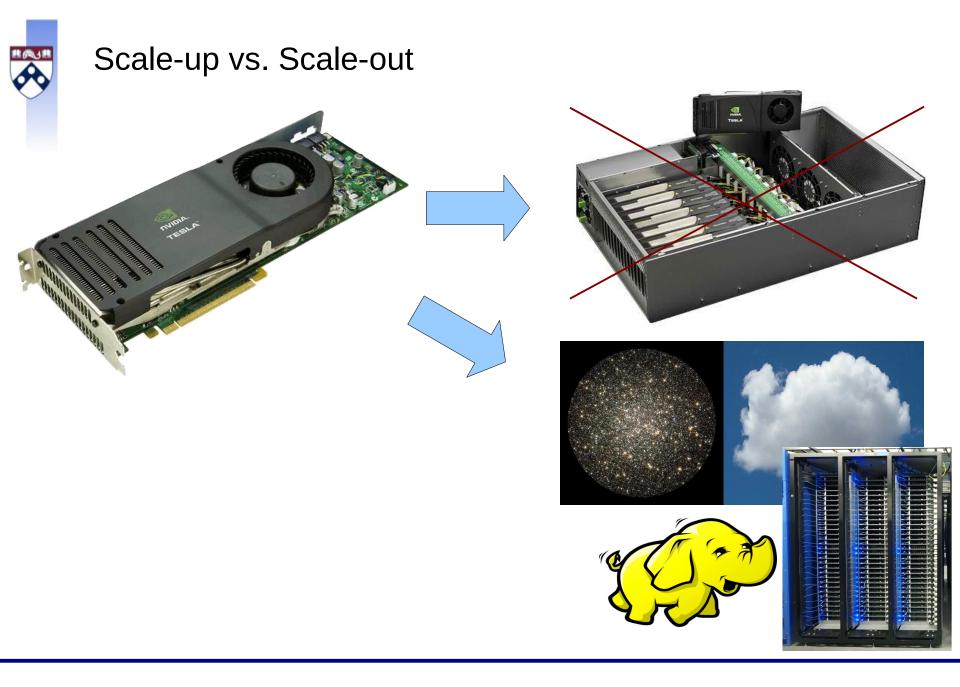
Agenda

- Scale-up vs. scale-out
- GPU & scale-out (MPI)
- Introduction to MapReduce
- MapReduce & GPU
 - Building a GPU MapReduce framework (UC Davis)
 - Hadoop Pipes (Tokyo Institute of Tech.)
 - Hadoop streams (UIUC)

Scale-up vs. Scale-out

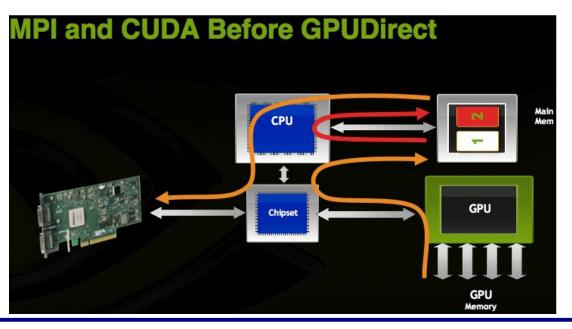


			2
	ते कि किसे	ALT.	A MARINE

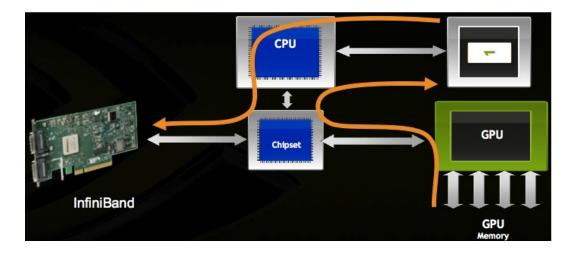


- On foot
 - Manage your own network connectivity, communication, data placement & movement, load balancing, fault tolerance, …
- MPI (Message passing interface)
 - Focus on communication (RDMA support), still have to manage data handling, load balancing, fault tolerance, ...

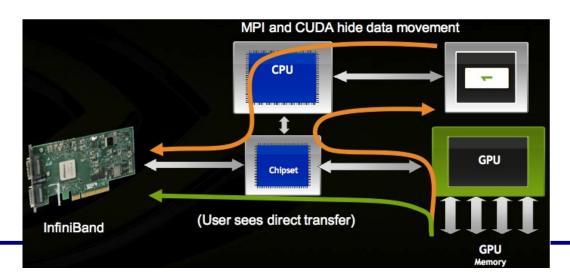
- On foot
 - Manage your own network connectivity, communication, data placement & movement, load balancing, fault tolerance, ...
- MPI (Message passing interface)
 - Focus on communication (RDMA support), still have to manage data handling, load balancing, fault tolerance, ...
 - GPUDirect (nVidia & Mellanox)



- On foot
 - Manage your own network connectivity, communication, data placement & movement, load balancing, fault tolerance, ...
- MPI (Message passing interface)
 - Focus on communication (RDMA support), still have to manage data handling, load balancing, fault tolerance, ...
 - GPUDirect (nVidia & Mellanox)
 - Infiniband card and GPU share DMA/RDMA region



- On foot
 - Manage your own network connectivity, communication, data placement & movement, load balancing, fault tolerance, ...
- MPI (Message passing interface)
 - Focus on communication (RDMA support), still have to manage data handling, load balancing, fault tolerance, ...
 - GPUDirect (nVidia & Mellanox)
 - Iinfiniband card and GPU share DMA/RDMA region
 - v2 uses UVA to make remote memory access transparent



Agenda

- Scale-up vs. scale-out
- GPU & scale-out (MPI)
- Introduction to MapReduce
- MapReduce & GPU
 - Building a GPU MapReduce framework (UC Davis)
 - Hadoop Pipes (Tokyo Institute of Tech.)
 - Hadoop streams (UIUC)

MapReduce

- Programming Model for Large-Volume Data Processing
- Specialized for frequent use case: aggregation queries
 - Map every input object to set of key/value pairs
 - Reduce (aggregate) all mapped values for same key into one result for that key

MapReduce

- Programming Model for Large-Volume Data Processing
- Specialized for frequent use case: aggregation queries
 - Map every input object to set of key/value pairs
 - Reduce (aggregate) all mapped values for same key into one result for that key
- Use this structure as explicit API for cluster computing
 - Submit jobs as (input data, map function, reduce function)
 - Implementation details for given architecture can be hidden
 - No need to manually implement parallelization, scheduling, fault tolerance, ...
 - Dynamic resource allocation by MR framework without code changes

Example – Word Frequency

```
map(String key, String value):
// key: document name
// value: document contents
for each word w in value:
   EmitIntermediate(w, "1");
```

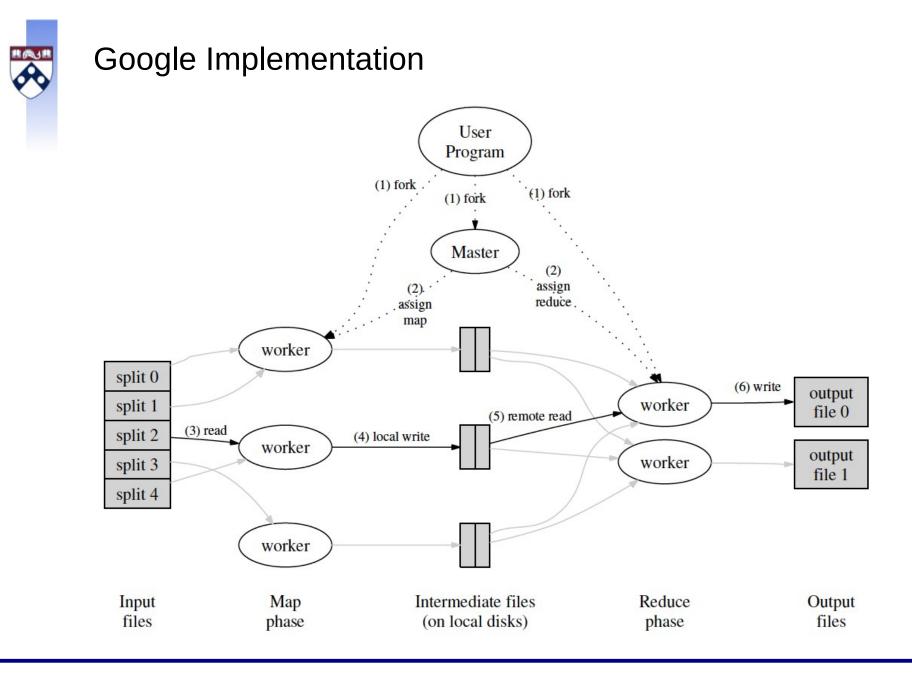
```
reduce(String key, Iterator values):
// key: a word
// values: a list of counts int result = 0;
for each v in values:
   result += ParseInt(v);
   Emit(AsString(result));
```


More Examples

- Grep
 - Input: (many) text files
 - Map: Emit line if matches
 - Reduce: Concatenate intermediate results
- URL Access Frequency
 - Input: Web server logs
 - Map: <URL,1>
 - Reduce: Add values for URL

MapReduce Environment

- Commodity PC Machines
 - Commodity CPU, Network, Storage
 - Distributed File System (Replicated)
- Map/Reduce is framework (library)
- First described by Google
 - Dean, Ghemawat: MapReduce: Simplified Data Processing on Large Clusters, OSDI 2004.
 - Implemented in C++



Fault Tolerance

- Master Data:
 - For each task
 - State: Complete / Idle / In-progress
 - Assigned worker (for non-idle tasks)
 - For each map task
 - size and location of intermediate results for each reduce job

Fault Tolerance

- Master Data:
 - For each task
 - State: Complete / Idle / In-progress
 - Assigned worker (for non-idle tasks)
 - For each map task
 - size and location of intermediate results for each reduce job
- Periodic Ping to Worker by Master
 - Reply includes status information on pending tasks
 - No reply:
 - Reschedule all its incomplete tasks
 - Also reschedule completed map tasks of that worker, results are inaccessible
 - Completed reduce tasks available in distributed file system

Fault Tolerance cont.

- Slow machines can delay whole job
 - faulty hard disks, faulty configuration
 - answer to pings, but do not complete
- Near end of job
 - process in-progress tasks redundantly
 - remaining in-progress jobs likely to be "stragglers"
 - redundant execution will overtake them
 - if inherently slow, original execution finishes first
 - typical results: 2x faster overall execution time

Fault Tolerance cont.

- Slow machines can delay whole job
 - faulty hard disks, faulty configuration
 - answer to pings, but do not complete
- Near end of job
 - process in-progress tasks redundantly
 - remaining in-progress jobs likely to be "stragglers"
 - redundant execution will overtake them
 - if inherently slow, original execution finishes first
 - typical results: 2x faster overall execution time
- What happens if the master crashes
 - Re-execute entire job
 - Unlikely as there is only 1 master per job
 - Checkpointing possible to reclaim partial results

MapReduce Scheduling

- Locality
 - Input Locality
 - Try to execute map jobs where data already is in DFS
 - Output Locality
 - User may specify reduce key-partitioning function
 - Co-locates related output in same reducers

MapReduce Scheduling

- Locality
 - Input Locality
 - Try to execute map jobs where data already is in DFS
 - Output Locality
 - User may specify reduce key-partitioning function
 - Co-locates related output in same reducers
- Combiner
 - For commutative and associative reducer functions
 - "Pre-aggregation": Aggregate in several stages
 - Reduces network traffic
 - Combiner tasks
 - code typically same as reduce
 - output is fed to other reduce/combine functions, not output files

MapReduce Variants – Related Products

- Hadoop (Yahoo, Apache)
 - Open-source Java implementation of Map/Reduce
- Sawzall (Google)
 - Domain-specific programming language (DSL) for Map stage
- Pig Latin (Yahoo)
 - DSL for large-volume processing jobs
 - can be compiled into Map/Reduce jobs
- Hive (Facebook)
 - Data warehouse
 - SQL-like interface
- Amazon EC2 (Elastic Cloud Computing)
 - Rent machines by the hour, can be preloaded with Hadoop server images
 - Nodes equipped with 2 Tesla M2050 available for \$2.60/hr ...

Agenda

- Scale-up vs. scale-out
- GPU & scale-out (MPI)
- Introduction to MapReduce
- MapReduce & GPU
 - Building a GPU MapReduce framework (UC Davis)
 - Hadoop Pipes (Tokyo Institute of Tech.)
 - Hadoop streams (UIUC)

MapReduce & GPU

- MapReduce frameworks promise to sweeten the bitter taste of distributed programming by handling system tasks:
 - communication, data placement & movement, load balancing, fault tolerance, ...
- The de-facto standard

- Implemented in Java, but
 - Can handle binaries

MapReduce & GPU

- Mars
 - frameworks for single CPU/GPU
- GPMR
 - C++ MR implementation specifically for GPU clusters
- Extending Hadoop MR to GPUs
 - Tokyo Institute of Technology
 - MITHRA

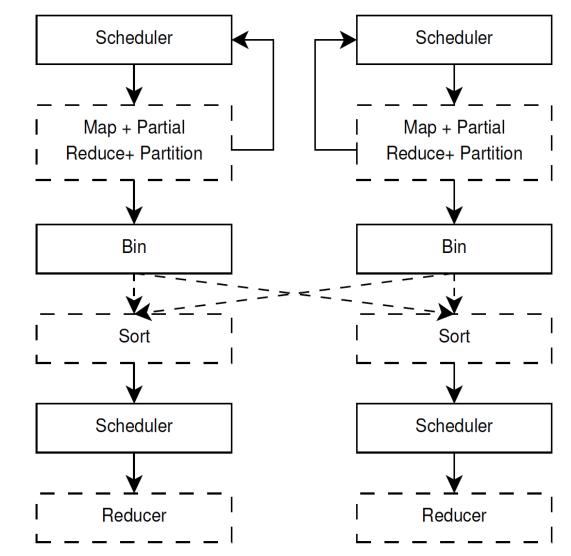
GPMR

- A standalone MR library implemented in C/C++
 - Allows native use of CUDA
- Starting with a naïve implementation:
 - Copy input data to GPU
 - Map, sort, reduce \rightarrow kernel calls
 - Copy data back
- What happens if the the amount of data > GPU memory?
- How to scale across nodes?
 - Partitioning is required
 - Optimizations:
 - Relax 1 thread to 1 work-item constraint
 - Use combiners for all map jobs of a node

GPMR

Phases

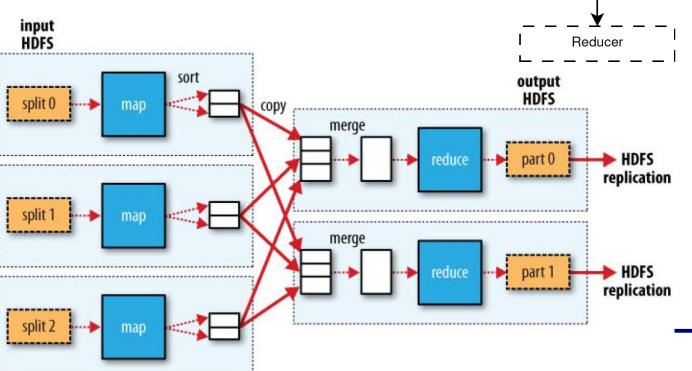
- Scheduler
 - = Master
- GPU map
 = (CPU map) sort
- GPU Partial Reduce
 = Combiner
- Partition defaults to RR
- Bin = Data tx
- Sort potentially executed on different node
- GPU Reduce = CPU reduce

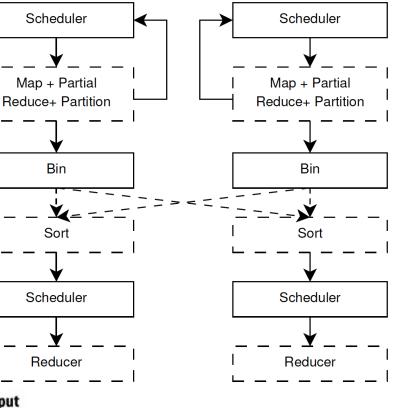


MR vs. GPMR

Confused ?

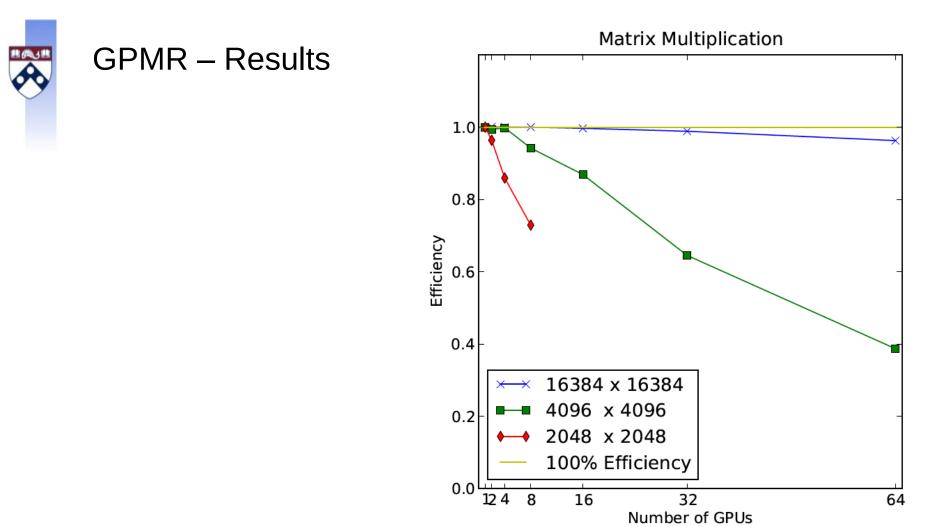
- Many new stages
- All stages open to the programmer ...
- Wasn't MapReduce designed to be simple ?





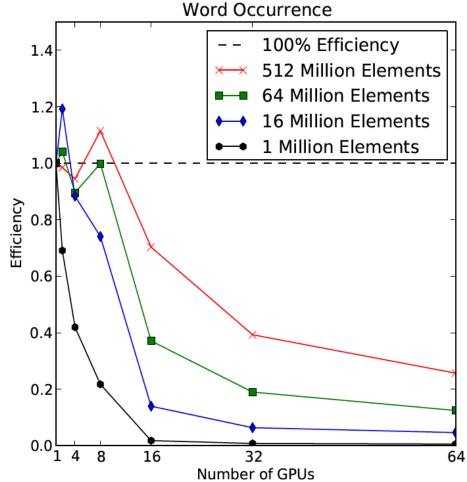
GPMR - Evaluation

- 5 "common" benchmarks for MR clusters
 - Matrix multiply
 - Sparse integer occurrence
 - Word occurrence
 - K-Means clustering
 - Linear Regression
- Demonstrate scalability
- Comparison with existing MR libraries
 - Mars, single GPU
 - Phoenix, multi-core CPU



- C=A+B, use blocking to partition matrix
- C_block(1,1)=A_block(1,1)*B_block(1,1) + A_block(1,2)*B_block(2,1) + ...
- Each mapper processes a matrix multiplication for individual block(s)
- Reducer sums all sub-matrices.

GPMR – Results



- String processing inefficient and mismatch for GPU
 - Dictionary relatively small, 43k words
 - Use integer hashing
- Use combiners to accumulate results
 - Implemented using atomics

GPMR – Results

• Comparison with MARS running on a single GPU

	MM	KMC	WO
1-GPU Speedup	2.695	37.344	3.098
4-GPU Speedup	10.760	129.425	11.709

• Comparison with Phoenix running on 4 CPU cores

 MM	KMC	LR	SIO	WO
 162.712 559.209				11000

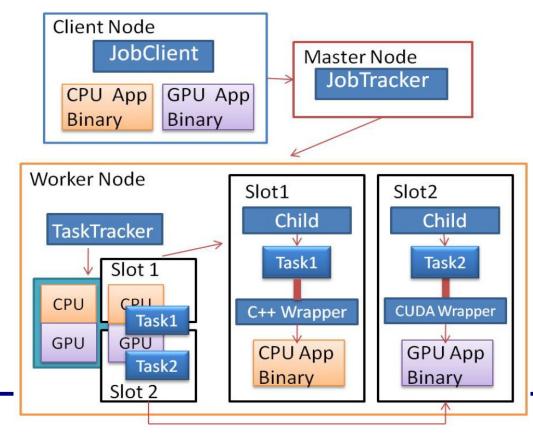
• Missing comparison with a "real" MR framework

Extending Hadoop MR

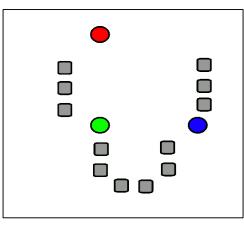
- Hadoop is implemented in Java
- Options to interface with CUDA
 - Hadoop Streaming Unix streams with line-oriented or binary interface
 - Works for any binary, but requires input parsing
 - Hadoop Pipes Unix sockets
 - C++ Hadoop library provides k-v abstractions
 - JNI
 - Allows to invoke external apps and libraries in C, asm, ...
 - Require platform specific libaries
 - Access to Java data structures through JNI slow

Tokyo Institure of Technology – Hadoop Pipes

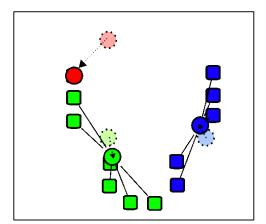
- Hybrid approach
 - CPU and GPU mappers
 - Scheduling not affected
 - Input/output formats unchanged
 - Transparent on which hardware Job runs



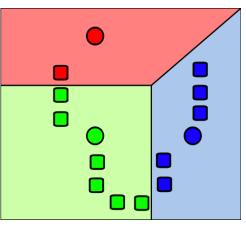
K-Means



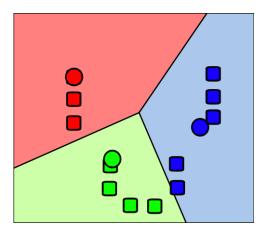
1) k initial "means" (k=3) randomly selected



3) centroid of each clusters = new mean



2) k clusters by finding nearest mean



4) Steps 2 and 3 are repeated until convergence, i.e. no more changes in assigments

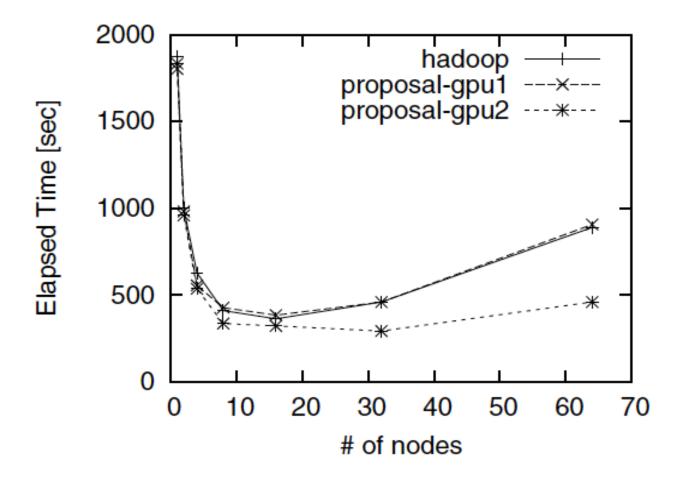
K-Means on MapReduce

- Map Phase
 - Load the cluster centers from a file
 - Iterate over each cluster center for each input key/value pair
 - Measure the distances and save the nearest center which has the lowest distance to the vector
 - Write the cluster center with its vector to the filesystem

K-Means on MapReduce

- Map Phase
 - Load the cluster centers from a file
 - Iterate over each cluster center for each input key/value pair
 - Measure the distances and save the nearest center which has the lowest distance to the vector
 - Write the cluster center with its vector to the filesystem
- Reduce Phase (we get associated vectors for each center)
 - Iterate over each value vector and calculate the average vector
 - This is the new center, save it to a file
 - Check the convergence between the cluster center that is stored in the key object and the new center
- Run this until nothing was updated anymore

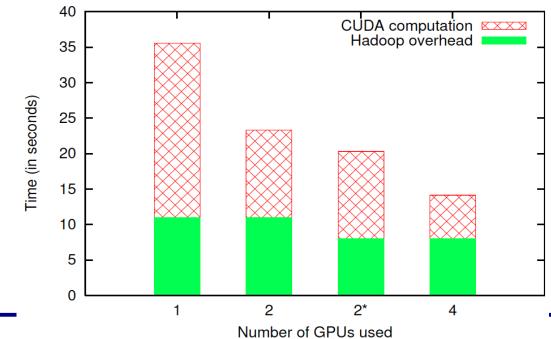
Tokyo Institure of Technology – K-Means Results



20GB input data (2-dimensional points), K=128, each node comprises 16 CPU cores, 32GB RAM, 2 GPUs

MITHRA – Options pricing

- Multiple Data Independeed Tasks on Heterogenous Resource Architecture
- Uses CUDA SDK version of Black Scholes option pricing
- Hadoop streams to distribute and execute the CUDA binary
 CPUs idle
- Combiners to aggregate local results



Black Scholes on MITHRA

Existing Approaches - issues

- GPMR
 - Stand-alone library
 - No Fault tolerance
 - No DFS
 - No communication handling (mapper reducer)
 - Not a complete Framework
- Tokyo Institute of Technology
 - Single application K-means
 - Small problem set (20GB) does not scale beyond 16 nodes
 - Cost of Hadoop streams
- MITHRA
 - Single application Options Pricing
 - Scalability evaluated on 2 nodes

References

J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large Clusters. OSDI'04

J. Stuart and J. Owens. Multi-GPU MapReduce on GPU Clusters. IPDPS'11

R. Favriar, A. Verma, E.Chan, R. Campbell. MITHRA: Multiple data independent Tasks on a Heterogeneous Resource Architecture. CLUSTER'09

K. Shirahata, H. Sato, S. Matsuoka. Hybrid Map Task Scheduling for GPU-Based Heterogeneous Clusters. CloudCom'10