" JEE
Agenda
CUDA Performance m Parallel Reduction Revisited
Considerations m Warp Partitioning
m Memory Coalescing
(1 of 2) m Dynamic Partitioning of SM Resources
Patrick Cozzi m Data Prefetching
University of Pennsylvania
CIS 565 - Spring 2012
" N " JE

Parallel Reduction

Efficient data-

: + m Recall Parallel Reduction (sum)
parallel algorithms

Lol el 2l CeI el E] e 7]

Optimizations based
on GPU Architecture

Maximum
Performance

Parallel Reduction

s Ce] T 23]]

Parallel Reduction

Parallel Reduction

28] [[[[2 21

" JEE
Parallel Reduction

m Similar to brackets for a basketball tournament
m log(n) passes for n elements

m How would you implement this in CUDA?

OO0O00O000

" JEE
__shared__ float partialSum[];
/I ... load into shared memory

unsigned int t= threadldx .x;

for (unsigned int stride = 1;
stride < blockDim .x;
stride *= 2)

{

__syncthreads ();
if (t% (2 * stride) == 0)
partialSum[t] +=
partialSum[t + stride];

Code from http:) engr.illinois. llabus.html

" JEE
__shared__ float partialSum[];
/I ... load into shared memory

unsigned int t= threadldx .x;
for (unsigned int stride = 1;
stride < blockDim .x;
stride *= 2)
Computing the sum for the
{ elements in shared memory

__syncthreads ();
if (t% (2 * stride) == 0)
partialSum[t] +=
partialSum[t + stride];

Code from http:) engr.illinois.

bus.html

_ shared__ float partialSum[];
/... load into shared memory
unsigned int t= threadldx .x;
for (unsigned int stride = 1;
stride < blockDim .x; Stride
stride *= 2) mEhe
{

__syncthreads ();
if (t% (2 * stride) == 0)
partialSum[t] +=
partialSum[t + stride];

Oooognric
[o
OoOoOoOoOod

engr.illinois.edu/ /al/Syllabus.html

Code from http:

__shared__ float partialSum[];

/... load into shared memory

unsigned int t= threadldx .x;

for (unsigned int stride = 1;
stride < blockDim .x;
stride *= 2)

{

‘_syncthreads 0F }~ {why? |
if (t% (2 * stride) == 0)
partialSum[t] +=
partialSum[t + stride];

Code from http: engr.illinois.eduft

bus.html

__shared__ float partialSum[];
/I ... load into shared memory

unsigned int t= threadldx .x;
for (unsigned int stride = 1;
stride < blockDim .x;
stride *= 2)
{ * Compute sum in same shared memory
* As stride increases, what do more threads do?
__syncthreads (); |

if (t% (2 * stride) == 0)
partialSum[t] +=
partialSum[t + stride];

Code from http:) engr.illinois.

bus.html

Parallel Reduction

Thread Thread Thread Thread
0

DG G EE
H|=a
]I)) =]

]

Thread Thread Thread Thread

I:l =
|:| W

[|

(TR
L L) Tskd -l
[T

Parallel Reduction

Thread Thread Thread Thread
0

N E G E
H|=la
|] o

EX |y i L

m 1St pass: threads 1, 3, 5, and 7 don’t do anything
Really only need n/2 threads for n elements

Thread Thread Thread Thread

=]

L]
[=

O O el
O O 00 1)

Parallel Reduction

Thread Thread Thread Thread
0

NG EEEEE
5] || o]
i |]z o

| | —
B

2a |) |\ | [) |

m 2" pass: threads 2 and 6 also don’t do anything

Thread Thread Thread Thread

] 0
=]

O O 00 1)

Parallel Reduction

=G E EE E E
o o] o e
|| == ===
e o e o e e

m 3 pass: thread 4 also doesn’t do anything

Parallel Reduction

Thread Thread Thread Thread Thread Thread Thread Thread

=G E EE E E
o o] o e
|| == = ==
ez o e o e e

m |n general, number of required threads cuts in half
after each pass

" JEE
Parallel Reduction

m What if we tweaked the implementation?

Parallel Reduction

Lol el 2l CeI el E] e 7]

Parallel Reduction

Parallel Reduction

5 5 B E

Parallel Reduction

28] [[[[0 2 2

__shared__ float partialSum[]
/... load into shared memory
unsigned int t= threadldx .x;
for (unsigned int stride = blockDim .x/2;
stride > 0;
stride /= 2) :
{ stride :...,4,2,1
__syncthreads ();
if (t < stride) oooo
: o o o o
partialSum[t] += i i

partialSum[t + stride];

Code from http:

labus.htm|

" JEE
__shared__ float partialSum[]
/I ... load into shared memory

unsigned int t= threadldx .x;

for (unsigned int stride = blockDim .x/ 2;
stride > 0;
stride /= 2)

{

__syncthreads ();

if (t<stride) |

partialSum[t] +=
partialSum[t + stride];

Code from http:) engr.illinois.

bus.html

Parallel Reduction

Thread Thread Thread Thread Thread Thread Thread Thread
0 1 2 3 4 5 6

mijja
-
]

111

EpEpE||s
0 0 O
O 000G
00 J 4

Parallel Reduction

Thread Thread Thread Thread Thread Thread Thread Thread
p—
I

m 15t pass: threads 4, 5, 6, and 7 don’t do anything
Really only need n/2 threads for n elements

O O 00 L)

Parallel Reduction

Thread Thread Thread Thread Thread Thread Thread Thread

L
| Eajj]
o o
| |

m 2" pass: threads 2 and 3 also don’t do anything

O O 00 L)

Parallel Reduction

Thread Thread Thread Thread Thread Thread Thread Thread
0

H\\\
|

]
]
]
O O 00 LI

m 3 pass: thread 1 also doesn’t do anything

= JEE
Parallel Reduction

m What is the difference?

" JEE
Parallel Reduction

m What is the difference?

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
[]]]
DIE%DI I]|
(|)| |)
ﬁDﬂDDD o o}
stride =1,2,4, ... stride =4,2,1, ...

if (t% (2 * stride) == 0) if (t<stride)
partialSuml[t] += partialSumlt] +=
partialSum|t + stride]; partialSumlt + stride];

stride =1,2,4, .. stride =4,2,1, ...

" JEE
Warp Partitioning

m Warp Partitioning: how threads from a
block are divided into warps

m Knowledge of warp partitioning can be
used to:
Minimize divergent branches
Retire warps early

Understand warp
partitioning = make
your code run
faster

" JEE
Warp Partitioning

m Partition based on consecutive increasing
threadldx

" JE
Warp Partitioning

m 1D Block
threadldx .x between 0 and 512 (G80/GT200)
Warp n
= Starts with thread 32n
= Ends with thread 32(n+ 1) — 1

Last warp is padded if block size is not a multiple
of 32

Warp 0 Warp 1 Warp 2 Warp 3
| 0.31 | [32.63 | [64.95 | [96..127] ...

" JE
Warp Partitioning

m 2D Block

Increasing threadldx ~ means
= Increasing threadldx .x
= Starting with row threadldx .y==0

" JE
Warp Partitioning

m 2D Block

Toy Tiy Toy Tay

B Tox Toy Toy Tay Top Tip Ty Ty Ty Ths Tog Tag

linearized order

Image from http:) engr.illinois.edu/e hapter5-CudaPerformance.pdf

" JE
Warp Partitioning

m 3D Block
Start with threadldx .z ==
Partition as a 2D block
Increase threadldx .z and repeat

" JEE
Warp Partitioning

Divergent branches are within a warp!

Time (clocks) D D D D D D D

ALUT ALU2 ALUS

<unconditional
shader code>

¥ = pou(x, exp);
| refl=y+Ka; |
x = 83 |

[refl = Ka;

<resume unconditional

Not all ALUs do useful work! shader code>
Worst case: 1/8 peak performance

Image from: http://bps10.idav.ucdavi: 03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf

" JEE
Warp Partitioning

m For warpSize ==32 , does any warp
have a divergent branch with this code:

if (threadldx .x>15)

{
..

10

" JEE
Warp Partitioning

m For any warpSize > 1, does any warp
have a divergent branch with this code:

if (threadldx .x> warpSize - 1)

{
..

" JEE
Warp Partitioning

m Pretend warpSize ==

Warp Warp Warp Warp Warp Warp Warp
0 1

2 3
) o |
o
L—1
o o
ﬁmﬂmm

stride =1,2,4, .. stride =4,2,1, ...

" JEE
Warp Partitioning

m Given knowledge of warp partitioning,
which parallel reduction is better?

[({t% (2* stride) == 0) | [(t<stride) |
partialSum[t] += partialSum[t] +=
partialSum[t + stride]; partialSum[t + stride];

stride =1,2,4, ... stride =4,2,1, ...

" JEE
Warp Partitioning

m 1st Pass

raen
divergent’
branches

stride =1,2,4, .. stride =4,2,1, ...

11

Warp Partitioning Warp Partitioning

m 2"d Pass m 2"d Pass
Wwarp Warp Warp Warp Warp Warp Warp Warp Warp Warp Warp Warp Warp Warp Warp Warp
0 1 2 3 0 0 1 2 3 0 1 2 3
[[o e
L o e o e
[
2 ’lﬁ 0
divergenl(| A divergent l:l I:l I:l l:l
branches T branches 1 (= (1
l:l divergent g l:l l:l l:l divergent
branch
stride

branch
stride =4,2,1, ... stride =1,2,4, ... stride =4,2,1, ...

Warp Partitioning Warp Partitioning

m 2" Pass m Good partitioning also allows warps to be
retired early.
Ve | ver | vee VeP | e | Ve | v Better hardware utilization

[OEE

[] || [(t% (2" stride) == 0) | || [(t<stride) |

E partialSum([t] += partialSum[t] +=
dlveigenl(E (dge:gzm partialSum[t + stride]; partialSumlt + stride];
branch ranc

stride =1,2,4, .. stride =4,2,1, ... stride =1,2,4, .. stride =4,2,1, ...

Still diverge when number of
elements left is <= warpSize

" JEE
Warp Partitioning

m Parallel Reduction

Warp Warp Warp Warp Warp Warp Warp Warp

0 1 2 3 0 1 2 3
) e

I o

[

I e

u|n|=]==

stride =1,2,4, ... stride =4,2,1, ...

Warp Partitioning

m 15t Pass
Warp Warp Warp Warp
0 1 2 3
[o)]]
wanps o o o
retired —
I e
ﬁmﬂmm

stride =1,2,4, ...

stride

warps
retired

=4,2,1, ...

Warp Partitioning

m 1St Pass

W(a)rp Wirp Wgrp Wgrp Wgrp Wirp Wgro Wgrp
(- [|- %,E@E?
O O i o |
o | | o
= OoOoo oD
stride =1,2,4, .. stride =4,2,1, ...

" JEE
Warp Partitioning

m 2"d Pass

Warp Warp
0

2
warps
retired

OO\ Y
K

stride =1,2,4, ..

retired

=
=

1] —
-

Wgrp Wgro \s\sgro
..... LI
S
\
] i
stride =4,2,1, ...

13

Warp Partitioning

m 2d Pass

i - B i - .
- LI L o] e o
m i | %%ﬁ@@j
0 |- o) o |
g | | o oo o
stride =1,2,4, ... stride =4,2,1, ...

" JEE
Memory Coalescing

m Given a matrix stored row-major in global
memory, what is a thread’s desirable
access pattern?

(O o

MO.l Ml.l MZ‘l M3.1

Moz Mi1p Map Mg,

M Moz Mz Maz Mys

3 MO.l Ml‘l MZ.l M3.1 MG‘Z M1.2 MZ‘Z M3.2 M0‘3 M1.3 M2‘3 M3‘3

Image from: http://bps10.idav.ucdavi 03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf

" JEE
Memory Coalescing

m Given a matrix stored row-major in global
memory, what is a thread’s desirable
access pattern?

Thread Thread

0 1
Thread 0 e
Thread 1 Fe———

a) column after column? b) row after row?

Image from: http://s engr.illinois.edule

ook/Chapter5-CudaPerformance.pdf

" JEE
Memory Coalescing

m Given a matrix stored row-major in global
memory, what is a thread’s desirable
access pattern?

a) column after column

n read increasing, consecutive
memory address

b) row after row

" read increasing, consecutive
memory addresses

14

Memory Coalescing

Access

(]](uec[tlnn L v, M, M, M
erne

code My, Mz Myp My,

Mgy M3 My My,

Load iteration 2
T, T, T, T,

Load iteration 1
T T, T, T

i

Mﬂ.! ME‘I Mll Ml,l M-n: h{I.‘ M".E Mz.z MB.E Ml} I'17.3 B'IZJ

a) column after column

Image from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter5-CudaPerformance.pdf

" JEE
Memory Coalescing

clvn'ecuon O v, M, M, M,
Kernel
code My, My, M, M,

M).! ML! h’il,B Nl),!

Load iteration 1 || Load iteration 2

Ty T, Ty || W B T,

.
nRRANANN

i Mﬂl MI] Mik Mil MD Ml M, 22 L‘!J Mﬂ,! M[_] M?S M!,)

b) row after row

Image from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter5-CudaPerformance.pdf

" JEE
Memory Coalescing

direction in M,y My, M, M,
Kernel e
code M, My, My, M3,

My My M5 My,

Load iteration 2
T T T T

Load iteration 1
Ty To 'Ty T,

B o 0 0 M Yo M M M M M M M,

Recall warp partitioning; if these
threads are in the same warp, global
memory addresses are increasing and
consecutive across warps.

Image from: http:/ engr.illinois.edu/ ook/Chapter5-CudaPerformance.pdf

" JEE
Memory Coalescing

m Global memory bandwidth (DRAM)
G80 - 86.4 GB/s
GT200 — 150 GB/s
m Achieve peak bandwidth by requesting
large, consecutive locations from DRAM

Accessing random location results in much
lower bandwidth

15

" JEE
Memory Coalescing

m Memory coalescing — rearrange access
patterns to improve performance

m Useful today but will be less useful with
large on-chip caches

" JEE
Memory Coalescing

m The GPU coalesce consecutive reads in a
half-warp into a single read

[. read global memory in a
coalesce-able fashion into shared memory

Then access shared memory randomly at
maximum bandwidth

= Ignoring bank conflicts — next lecture

See Appendix G in the NVIDIA CUDA C Programming Guide for coalescing alignment requirements

" JEE
SM Resource Partitioning

m Recall a SM dynamically partitions
resources:

Thread block slots
Thread slots

Registers

SM

" JEE
SM Resource Partitioning

m Recall a SM dynamically partitions

resources:
G80 Limits
;
8K registers / 32K memory
SM

16

" JEE
SM Resource Partitioning

m We can have
8 blocks of 96 threads
4 blocks of 192 threads
But not 8 blocks of 192 threads

G80 Limits
’
8K registers / 32K memory
SM

" JEE
SM Resource Partitioning
m We can have (assuming 256 thread blocks)

768 threads (3 blocks) using 10 registers each
512 threads (2 blocks) using 11 registers each

G80 Limits
’
8K registers / 32K memory
SM

" JEE
SM Resource Partitioning
m We can have (assuming 256 thread blocks)

768 threads (3 blocks) using 10 registers each
512 threads (2 blocks) using 11 registers each

m More registers
decreases thread-
level parallelism

m Canitever
increase
performance?

G80 Limits

Thread block slots
Thread slots

Registers

SM

8

768

8K registers / 32K memory
16K

" JEE
SM Resource Partitioning

m Performance CIiff: Increasing resource
usage leads to a dramatic reduction in
parallelism

For example, increasing the number of
registers, unless doing so hides latency of
global memory access

17

" JE
SM Resource Partitioning

m CUDA Occupancy Calculator

http://developer.download.nvidia.com/comput
e/cuda/CUDA Occupancy calculator.xls

" JE
Data Prefetching

m Independent instructions between a global
memory read and its use can hide memory
latency

float m = Md[i];
float f=a*b+c*d;
float f2=m*f;

" JE
Data Prefetching

m Independent instructions between a global
memory read and its use can hide memory
latency

‘ﬂoat m= Md[|], "—{ Read global memory ‘
float f=a*b+c*d,
float f2=m*f;

" JE
Data Prefetching

m Independent instructions between a global
memory read and its use can hide memory
latency

float m = Md[i];
\float fizabscad ‘
float f2=m*f; [

Execute instructions
that are not dependent
on memory read

18

" JEE
Data Prefetching

m Independent instructions between a global
memory read and its use can hide memory
latency

float m = Md[i];
float f=a*b+c*d,
‘float f2=m* f, ‘W Use global memory after

the above line from
enough warps hide the
memory latency

" JEE
Data Prefetching

m Prefetching data from global memory can
effectively increase the number of
independent instructions between global
memory read and use

" JEE
Data Prefetching

m Recall tiled matrix multiply:

for (/*..*)

{
/I Load current tile into shared memory
__syncthreads ();
/I Accumulate dot product
__syncthreads ();

}

" JEE
Data Prefetching

m Tiled matrix multiply with prefetch:

/I Load first tile into registers

for (/*...*)

{
/I Deposit registers into shared memory
__syncthreads ();
/I Load next tile into registers
/I Accumulate dot product
__syncthreads ();

19

" JE
Data Prefetching

m Tiled matrix multiply with prefetch:

k/ Load first tile into registers ‘

for (/*...*)

{
/I Deposit registers into shared memory
__syncthreads ();
/l Load next tile into registers
/I Accumulate dot product
__syncthreads ();

" JE
Data Prefetching

m Tiled matrix multiply with prefetch:

/I Load first tile into registers

for (/*...*)

{
/I Deposit registers into shared memory
__syncthreads ();
Y/ Load next tile into registers
/I Accumulate dot product
__syncthreads ();

}

‘ Prefetch for next
iteration of the loop

" JE
Data Prefetching

m Tiled matrix multiply with prefetch:

/I Load first tile into registers

for (/*...*)

{
/I Deposit registers into shared memory
__syncthreads ();

/I Load next tile into registers These instructions

k/ Accumulate dot product executed by enough
syncthreads (); threads will hide the
- memory latency of the
} prefetch

20

