
CPU Architecture Overview

Varun Sampath

CIS 565 Spring 2012

Objectives

• Performance tricks of a modern CPU
– Pipelining

– Branch Prediction

– Superscalar

– Out-of-Order (OoO) Execution

– Memory Hierarchy

– Vector Operations

– SMT

– Multicore

What is a CPU anyways?

• Execute instructions

• Now so much more

– Interface to main memory (DRAM)

– I/O functionality

• Composed of transistors

Instructions

• Examples: arithmetic, memory, control flow
add r3,r4 -> r4

load [r4] -> r7

jz end

• Given a compiled program, minimize
𝑐𝑦𝑐𝑙𝑒𝑠

𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛
 ×

𝑠𝑒𝑐𝑜𝑛𝑑𝑠

𝑐𝑦𝑐𝑙𝑒

– CPI (cycles per instruction) & clock period

– Reducing one term may increase the other

Desktop Programs

• Lightly threaded

• Lots of branches

• Lots of memory accesses

vim ls

Conditional branches 13.6% 12.5%

Memory accesses 45.7% 45.7%

Vector instructions 1.1% 0.2%

Profiled with psrun on ENIAC

Source: intel.com

http://www.intel.com/content/www/us/en/chipsets/performance-chipsets/x79-express-chipset-diagram.html

What is a Transistor?

• Approximation: a voltage-controlled switch

• Typical channel lengths (for 2012): 22-32nm

Channel

Image: Penn ESE370

http://www.seas.upenn.edu/~ese370/fall2011/lectures/Day10_6up.pdf

Intel Core i7 3960X (Codename Sandy Bridge-E) – 2.27B transistors, Total Size 435mm2

Source: www.lostcircuits.com

http://www.lostcircuits.com/

A Simple CPU Core

Image: Penn CIS501

PC I$
Register

File

s1 s2 d
D$

+

4

control

https://www.seas.upenn.edu/~cis501/lectures/04_pipeline.pdf

A Simple CPU Core

Image: Penn CIS501

Fetch  Decode  Execute  Memory  Writeback

PC I$
Register

File

s1 s2 d
D$

+

4

control

https://www.seas.upenn.edu/~cis501/lectures/04_pipeline.pdf

Pipelining

Image: Penn CIS501

PC Insn
Mem

Register
File

s1 s2 d
Data
Mem

+
4

Tinsn-mem Tregfile TALU Tdata-mem Tregfile

Tsinglecycle

https://www.seas.upenn.edu/~cis501/lectures/04_pipeline.pdf

Pipelining

• Capitalize on instruction-level parallelism (ILP)

+ Significantly reduced clock period

– Slight latency & area increase (pipeline latches)

? Dependent instructions

? Branches

• Alleged Pipeline Lengths:
– Core 2: 14 stages

– Pentium 4 (Prescott): > 20 stages

– Sandy Bridge: in between

Bypassing

Image: Penn CIS501

sub R2,R3  R7 add R1,R7  R2

Register
File

S
X

s1 s2 d
Data
Mem

a

d

IR

A

B

IR

O

B

IR

O

D

IR

F/D D/X X/M M/W

stall

nop

https://www.seas.upenn.edu/~cis501/lectures/04_pipeline.pdf

Stalls

Image: Penn CIS501

load [R3]  R7 add R1,R7  R2

Register
File

S
X

s1 s2 d
Data
Mem

a

d

IR

A

B

IR

O

B

IR

O

D

IR

F/D D/X X/M M/W

stall

nop

https://www.seas.upenn.edu/~cis501/lectures/04_pipeline.pdf

Branches

Image: Penn CIS501

jeq loop ??? ???

Register
File

S
X

s1 s2 d
Data
Mem

a

d

IR

A

B

IR

O

B

IR

O

D

IR

F/D D/X X/M M/W

nop

https://www.seas.upenn.edu/~cis501/lectures/04_pipeline.pdf

Branch Prediction

• Guess what instruction comes next

• Based off branch history

• Example: two-level predictor with global
history

– Maintain history table of all outcomes for M
successive branches

– Compare with past N results (history register)

– Sandy Bridge employs 32-bit history register

Branch Prediction

+ Modern predictors > 90% accuracy

o Raise performance and energy efficiency (why?)

– Area increase

– Potential fetch stage latency increase

Another option: Predication

• Replace branches with conditional instructions

; if (r1==0) r3=r2

cmoveq r1, r2 -> r3

+ Avoids branch predictor
o Avoids area penalty, misprediction penalty

– Avoids branch predictor
o Introduces unnecessary nop if predictable branch

• GPUs also use predication

Improving IPC

• IPC (instructions/cycle) bottlenecked at 1
instruction / clock

• Superscalar – increase pipeline width

Image: Penn CIS371

Superscalar

+ Peak IPC now at N (for N-way superscalar)

o Branching and scheduling impede this

o Need some more tricks to get closer to peak (next)

– Area increase

o Doubling execution resources

o Bypass network grows at N2

o Need more register & memory bandwidth

Superscalar in Sandy Bridge

Image © David Kanter, RWT

http://realworldtech.com/page.cfm?ArticleID=RWT091810191937&p=10

Scheduling

• Consider instructions:
xor r1,r2 -> r3

add r3,r4 -> r4

sub r5,r2 -> r3

addi r3,1 -> r1

• xor and add are dependent (Read-After-
Write, RAW)

• sub and addi are dependent (RAW)

• xor and sub are not (Write-After-Write,
WAW)

Register Renaming

• How about this instead:
xor p1,p2 -> p6

add p6,p4 -> p7

sub p5,p2 -> p8

addi p8,1 -> p9

• xor and sub can now execute in parallel

Out-of-Order Execution

• Reordering instructions to maximize throughput

• Fetch  Decode  Rename  Dispatch  Issue
 Register-Read  Execute  Memory 
Writeback  Commit

• Reorder Buffer (ROB)
– Keeps track of status for in-flight instructions

• Physical Register File (PRF)

• Issue Queue/Scheduler
– Chooses next instruction(s) to execute

OoO in Sandy Bridge

Image © David Kanter, RWT

http://realworldtech.com/page.cfm?ArticleID=RWT091810191937&p=10

Out-of-Order Execution

+ Brings IPC much closer to ideal
– Area increase
– Energy increase
• Modern Desktop/Mobile In-order CPUs

– Intel Atom
– ARM Cortex-A8 (Apple A4, TI OMAP 3)
– Qualcomm Scorpion

• Modern Desktop/Mobile OoO CPUs
– Intel Pentium Pro and onwards
– ARM Cortex-A9 (Apple A5, NV Tegra 2/3, TI OMAP 4)
– Qualcomm Krait

Memory Hierarchy

• Memory: the larger it gets, the slower it gets

• Rough numbers:

 Latency Bandwidth Size

SRAM (L1, L2, L3) 1-2ns 200GBps 1-20MB

DRAM (memory) 70ns 20GBps 1-20GB

Flash (disk) 70-90µs 200MBps 100-1000GB

HDD (disk) 10ms 1-150MBps 500-3000GB

SRAM & DRAM latency, and DRAM bandwidth for Sandy Bridge from Lostcircuits
Flash and HDD latencies from AnandTech
Flash and HDD bandwidth from AnandTech Bench
SRAM bandwidth guesstimated.

http://www.lostcircuits.com/mambo/index.php?option=com_content&task=view&id=98&Itemid=1&limit=1&limitstart=7
http://www.anandtech.com/show/2614/8
http://www.anandtech.com/bench/SSD/261

Caching

• Keep data you need close

• Exploit:

– Temporal locality

• Chunk just used likely to be used again soon

– Spatial locality

• Next chunk to use is likely close to previous

Cache Hierarchy

• Hardware-managed

– L1 Instruction/Data
caches

– L2 unified cache

– L3 unified cache

• Software-managed

– Main memory

– Disk

I$ D$

L2

L3

Main Memory

Disk

(not to scale)

L
a
r
g
e
r

F
a
s
t
e
r

Intel Core i7 3960X – 15MB L3 (25% of die). 4-channel Memory Controller, 51.2GB/s total

Source: www.lostcircuits.com

http://www.lostcircuits.com/

Some Memory Hierarchy Design
Choices

• Banking

– Avoid multi-porting

• Coherency

• Memory Controller

– Multiple channels for bandwidth

Parallelism in the CPU

• Covered Instruction-Level (ILP) extraction

– Superscalar

– Out-of-order

• Data-Level Parallelism (DLP)

– Vectors

• Thread-Level Parallelism (TLP)

– Simultaneous Multithreading (SMT)

– Multicore

Vectors Motivation

for (int i = 0; i < N; i++)

 A[i] = B[i] + C[i];

CPU Data-level Parallelism

• Single Instruction Multiple Data (SIMD)
– Let’s make the execution unit (ALU) really wide
– Let’s make the registers really wide too

for (int i = 0; i < N; i+= 4) {

 // in parallel

 A[i] = B[i] + C[i];

 A[i+1] = B[i+1] + C[i+1];

 A[i+2] = B[i+2] + C[i+2];

 A[i+3] = B[i+3] + C[i+3];

}

Vector Operations in x86

• SSE2

– 4-wide packed float and packed integer instructions

– Intel Pentium 4 onwards

– AMD Athlon 64 onwards

• AVX

– 8-wide packed float and packed integer instructions

– Intel Sandy Bridge

– AMD Bulldozer

Thread-Level Parallelism

• Thread Composition

– Instruction streams

– Private PC, registers, stack

– Shared globals, heap

• Created and destroyed by programmer

• Scheduled by programmer or by OS

Simultaneous Multithreading

• Instructions can be issued from multiple
threads

• Requires partitioning of ROB, other buffers

+ Minimal hardware duplication

+ More scheduling freedom for OoO

– Cache and execution resource contention can
reduce single-threaded performance

Multicore

• Replicate full pipeline

• Sandy Bridge-E: 6 cores

+ Full cores, no resource sharing other than last-
level cache

+ Easier way to take advantage of Moore’s Law

– Utilization

Locks, Coherence, and Consistency

• Problem: multiple threads reading/writing to
same data

• A solution: Locks
– Implement with test-and-set, load-link/store-

conditional instructions

• Problem: Who has the correct data?

• A solution: cache coherency protocol

• Problem: What is the correct data?

• A solution: memory consistency model

Conclusions

• CPU optimized for sequential programming

– Pipelines, branch prediction, superscalar, OoO

– Reduce execution time with high clock speeds and
high utilization

• Slow memory is a constant problem

• Parallelism

– Sandy Bridge-E great for 6-12 active threads

– How about 12,000?

References

• Milo Martin, Penn CIS501 Fall 2011
http://www.seas.upenn.edu/~cis501

• David Kanter, “Intel's Sandy Bridge
Microarchitecture.” 9/25/10.
http://www.realworldtech.com/page.cfm?ArticleI
D=RWT091810191937

• Agner Fog, “The microarchitecture of Intel, AMD
and VIA CPUs.” 6/8/2011.
http://www.agner.org/optimize/microarchitectur
e.pdf

http://www.seas.upenn.edu/~cis501
http://www.realworldtech.com/page.cfm?ArticleID=RWT091810191937
http://www.realworldtech.com/page.cfm?ArticleID=RWT091810191937
http://www.realworldtech.com/page.cfm?ArticleID=RWT091810191937
http://www.agner.org/optimize/microarchitecture.pdf
http://www.agner.org/optimize/microarchitecture.pdf

Bibliography

• Jon Stokes’ articles introducing pipelining: 1, 2

• CMOV discussion on Mozilla mailing list

• Herb Sutter, “The Free Lunch Is Over: A
Fundamental Turn Toward Concurrency in
Software.” link

http://arstechnica.com/old/content/2004/09/pipelining-1.ars
http://arstechnica.com/old/content/2004/09/pipelining-2.ars
https://mail.mozilla.org/pipermail/tamarin-devel/2008-April/000453.html
http://www.gotw.ca/publications/concurrency-ddj.htm

