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Objectives 

• Performance tricks of a modern CPU 
– Pipelining 

– Branch Prediction 

– Superscalar 

– Out-of-Order (OoO) Execution 

– Memory Hierarchy 

– Vector Operations 

– SMT 

– Multicore 



What is a CPU anyways? 

• Execute instructions 

• Now so much more 

– Interface to main memory (DRAM) 

– I/O functionality 

• Composed of transistors 

 



Instructions 

• Examples: arithmetic, memory, control flow 
add r3,r4 -> r4  

load [r4] -> r7 

jz end 

• Given a compiled program, minimize 
𝑐𝑦𝑐𝑙𝑒𝑠

𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛
  ×

𝑠𝑒𝑐𝑜𝑛𝑑𝑠

𝑐𝑦𝑐𝑙𝑒
 

– CPI (cycles per instruction) & clock period  

– Reducing one term may increase the other 

 



Desktop Programs 

• Lightly threaded 

• Lots of branches 

• Lots of memory accesses 

vim ls 

Conditional branches 13.6% 12.5% 

Memory accesses 45.7% 45.7% 

Vector instructions 1.1% 0.2% 

Profiled with psrun on ENIAC 



Source: intel.com 

http://www.intel.com/content/www/us/en/chipsets/performance-chipsets/x79-express-chipset-diagram.html


What is a Transistor? 

• Approximation: a voltage-controlled switch 

• Typical channel lengths (for 2012): 22-32nm 

 

Channel 

Image: Penn ESE370 

http://www.seas.upenn.edu/~ese370/fall2011/lectures/Day10_6up.pdf


Intel Core i7 3960X (Codename Sandy Bridge-E) – 2.27B transistors, Total Size 435mm2 

Source: www.lostcircuits.com 

http://www.lostcircuits.com/


A Simple CPU Core 

Image: Penn CIS501 
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A Simple CPU Core 

Image: Penn CIS501 
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Pipelining 

Image: Penn CIS501 
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Pipelining 

• Capitalize on instruction-level parallelism (ILP) 

+ Significantly reduced clock period 

– Slight latency & area increase (pipeline latches) 

? Dependent instructions 

? Branches 

• Alleged Pipeline Lengths: 
– Core 2: 14 stages 

– Pentium 4 (Prescott): > 20 stages 

– Sandy Bridge: in between 

 
 



Bypassing 

Image: Penn CIS501 
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Stalls 

Image: Penn CIS501 
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Branches 

Image: Penn CIS501 
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Branch Prediction 

• Guess what instruction comes next 

• Based off branch history 

• Example: two-level predictor with global 
history 

– Maintain history table of all outcomes for M 
successive branches 

– Compare with past N results (history register) 

– Sandy Bridge employs 32-bit history register 



Branch Prediction 

+ Modern predictors > 90% accuracy 

o Raise performance and energy efficiency (why?) 

– Area increase 

– Potential fetch stage latency increase 



Another option: Predication 

• Replace branches with conditional instructions 

; if (r1==0) r3=r2  

cmoveq r1, r2 -> r3 

+ Avoids branch predictor 
o Avoids area penalty, misprediction penalty 

– Avoids branch predictor 
o Introduces unnecessary nop if predictable branch 

• GPUs also use predication 



Improving IPC  

• IPC (instructions/cycle) bottlenecked at 1 
instruction / clock 

• Superscalar – increase pipeline width 

 

 

Image: Penn CIS371 



Superscalar 

+ Peak IPC now at N (for N-way superscalar) 

o Branching and scheduling impede this 

o Need some more tricks to get closer to peak (next) 

– Area increase 

o Doubling execution resources 

o Bypass network grows at N2 

o Need more register & memory bandwidth 

 



Superscalar in Sandy Bridge 

Image © David Kanter, RWT 

http://realworldtech.com/page.cfm?ArticleID=RWT091810191937&p=10


Scheduling 

• Consider instructions: 
xor r1,r2 -> r3  

add r3,r4 -> r4  

sub r5,r2 -> r3  

addi r3,1 -> r1 

• xor and add are dependent (Read-After-
Write, RAW) 

• sub and addi are dependent (RAW) 

• xor and sub are not (Write-After-Write, 
WAW) 

 

 

 

 



Register Renaming 

• How about this instead: 
xor p1,p2 -> p6  

add p6,p4 -> p7  

sub p5,p2 -> p8  

addi p8,1 -> p9 

• xor and sub can now execute in parallel 

 

 

 

 



Out-of-Order Execution 

• Reordering instructions to maximize throughput 

• Fetch  Decode  Rename  Dispatch  Issue 
 Register-Read  Execute  Memory  
Writeback  Commit 

• Reorder Buffer (ROB) 
– Keeps track of status for in-flight instructions 

• Physical Register File (PRF) 

• Issue Queue/Scheduler 
– Chooses next instruction(s) to execute 

 

 



OoO in Sandy Bridge 

Image © David Kanter, RWT 

http://realworldtech.com/page.cfm?ArticleID=RWT091810191937&p=10


Out-of-Order Execution 

+ Brings IPC much closer to ideal 
– Area increase 
– Energy increase 
• Modern Desktop/Mobile In-order CPUs 

– Intel Atom 
– ARM Cortex-A8 (Apple A4, TI OMAP 3) 
– Qualcomm Scorpion 

• Modern Desktop/Mobile OoO CPUs 
– Intel Pentium Pro and onwards 
– ARM Cortex-A9 (Apple A5, NV Tegra 2/3, TI OMAP 4) 
– Qualcomm Krait 

 
 



Memory Hierarchy 

• Memory: the larger it gets, the slower it gets 

• Rough numbers: 

 Latency Bandwidth Size 

SRAM (L1, L2, L3) 1-2ns 200GBps 1-20MB 

DRAM (memory) 70ns 20GBps 1-20GB 

Flash (disk) 70-90µs 200MBps 100-1000GB 

HDD (disk) 10ms 1-150MBps 500-3000GB 

SRAM & DRAM latency, and DRAM bandwidth for Sandy Bridge from Lostcircuits 
Flash and HDD latencies from AnandTech 
Flash and HDD bandwidth from AnandTech Bench 
SRAM bandwidth guesstimated. 
 

http://www.lostcircuits.com/mambo/index.php?option=com_content&task=view&id=98&Itemid=1&limit=1&limitstart=7
http://www.anandtech.com/show/2614/8
http://www.anandtech.com/bench/SSD/261


Caching 

• Keep data you need close 

• Exploit: 

– Temporal locality 

• Chunk just used likely to be used again soon 

– Spatial locality 

• Next chunk to use is likely close to previous 



Cache Hierarchy 

• Hardware-managed 

– L1 Instruction/Data 
caches 

– L2 unified cache 

– L3 unified cache 

• Software-managed 

– Main memory 

– Disk 
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Intel Core i7 3960X – 15MB L3 (25% of die). 4-channel Memory Controller, 51.2GB/s total 

Source: www.lostcircuits.com 

http://www.lostcircuits.com/


Some Memory Hierarchy Design 
Choices 

• Banking 

– Avoid multi-porting 

• Coherency 

• Memory Controller 

– Multiple channels for bandwidth 

 



Parallelism in the CPU 

• Covered Instruction-Level (ILP) extraction 

– Superscalar 

– Out-of-order 

• Data-Level Parallelism (DLP) 

– Vectors 

• Thread-Level Parallelism (TLP) 

– Simultaneous Multithreading (SMT) 

– Multicore 



Vectors Motivation 

for (int i = 0; i < N; i++) 

 A[i] = B[i] + C[i]; 



CPU Data-level Parallelism 

• Single Instruction Multiple Data (SIMD) 
– Let’s make the execution unit (ALU) really wide 
– Let’s make the registers really wide too 

 

for (int i = 0; i < N; i+= 4) { 

 // in parallel 

 A[i] = B[i] + C[i]; 

 A[i+1] = B[i+1] + C[i+1]; 

 A[i+2] = B[i+2] + C[i+2]; 

 A[i+3] = B[i+3] + C[i+3]; 

} 

 

 



Vector Operations in x86 

• SSE2 

– 4-wide packed float and packed integer instructions 

– Intel Pentium 4 onwards 

– AMD Athlon 64 onwards 

• AVX 

– 8-wide packed float and packed integer instructions 

– Intel Sandy Bridge 

– AMD Bulldozer 



Thread-Level Parallelism 

• Thread Composition 

– Instruction streams 

– Private PC, registers, stack 

– Shared globals, heap 

• Created and destroyed by programmer 

• Scheduled by programmer or by OS 

 



Simultaneous Multithreading 

• Instructions can be issued from multiple 
threads 

• Requires partitioning of ROB, other buffers 

+ Minimal hardware duplication 

+ More scheduling freedom for OoO 

– Cache and execution resource contention can 
reduce single-threaded performance 



Multicore 

• Replicate full pipeline 

• Sandy Bridge-E: 6 cores 

+ Full cores, no resource sharing other than last-
level cache 

+ Easier way to take advantage of Moore’s Law 

– Utilization 

 



Locks, Coherence, and Consistency 

• Problem: multiple threads reading/writing to 
same data 

• A solution: Locks 
– Implement with test-and-set, load-link/store-

conditional instructions 

• Problem: Who has the correct data? 

• A solution: cache coherency protocol 

• Problem: What is the correct data? 

• A solution: memory consistency model 



Conclusions 

• CPU optimized for sequential programming 

– Pipelines, branch prediction, superscalar, OoO 

– Reduce execution time with high clock speeds and 
high utilization 

• Slow memory is a constant problem 

• Parallelism 

– Sandy Bridge-E great for 6-12 active threads 

– How about 12,000? 
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