
1

Mobile Graphics

Patrick Cozzi
University of Pennsylvania
CIS 565 - Spring 2012

Announcements

� Homework 5
� Due today
� In-class quiz this Wednesday

� Monday, 04/23
� No class

� Wednesday, 04/25
� Project presentations, 9am-12pm, 307 Towne
� Post code, paper, and video on blog beforehand
�One-on-one demos to follow presentations

Agenda

� Tile-Based Rendering
� Motivation

� Implementation
� Implications on optimizing our code

Memory Bandwidth

� For 32-bit color, 4 bytes per pixel are
needed for display
� How many bytes were transferred?

2

Memory Bandwidth

� For 32-bit color, 4 bytes per pixel are
needed for display
� How many bytes were transferred?
�12 bytes?
� Read/write depth and stencil
�Write color

Memory Bandwidth

� For 32-bit color, 4 bytes per pixel are needed for
display
� How many bytes were transferred?
� 12 bytes?
� Read/write depth and stencil
� Write color

�What about:
� Textures

� Overdraw
� Blending

� Multisampling

Immediate Mode Rendering

Image from http://www.openglinsights.com/

� Immediate Mode Rendering (IMR)
specifies triangles to be drawn in a current
state

Immediate Mode Rendering

Image from http://www.openglinsights.com/

� IMRs can result in overdraw

3

Immediate Mode Rendering

Image from http://www.openglinsights.com/

� Sort front to back to minimize overdraw

Immediate Mode Rendering

Image from http://www.openglinsights.com/

� Depth pre-pass to minimize overdraw

Tile-Based Rendering

� Bandwidth uses a significant amount of
power consumption
� Mobile graphics want to maximum battery

life. How?
�Minimize accessing the framebuffer in global

memory

Tile-Based Rendering

Image from http://www.imgtec.com/powervr/insider/docs/PowerVR%20Series5%20Graphics.SGX%20architecture%20guide%20for%20developers.1.0.8.External.pdf

� Break framebuffer up into tiles, e.g., 16x16 pixels

4

Tile-Based Rendering

� Render one tile at a time using all primitives that
overlap a tile

Images from http://www.openglinsights.com/

Tile-Based Rendering

� A tile is stored on-chip in the tile buffer
� All depth/stencil/color access is on-chip
� After the tile is rendered, color is written to

global memory
� How does this affect vertex processing?

Tile-Based Rendering

� Avoid transforming all vertices in the scene
per-tile by storing
�gl_Position and vertex shader varyings

�Fragment shader and uniforms
�Fixed function state, e.g., depth test, etc.

in a spatial data structure call the frame data

Tile-Based Rendering

Image from http://www.openglinsights.com/

5

What’s the Difference?

Image from http://www.openglinsights.com/

IMR Tile-Based

Framebuffer Clears

� glClear is cheap and clears frame data
�Don’t skip it
�Clear everything, e.g., all buffers, no scissor

test, etc.

� Even better, use
EXT_discard_framebuffer:

const GLenum attachments[3] = { COLOR_EXT, DEPTH_EXT, STENCIL_EXT };
glDiscardFramebufferEXT(GL_FRAMEBUFFER, 3, attachments);

Tile-Based Deferred Rendering

� On PowerVR, only fragments that
contribute to the scene are shaded:

� Called Tile-Based Deferred Rendering
(TBDR)

Image from http://www.imgtec.com/powervr/insider/docs/PowerVR%20Series5%20Graphics.SGX%20architecture%20guide%20for%20developers.1.0.8.External.pdf

Tile-Based Deferred Rendering

Image from http://www.openglinsights.com/

� How does sorting front-to-back and depth
prepass affect TBDR?

