Programming GPUs for database applications

- outsourcing index search operations

Tim Kaldewey

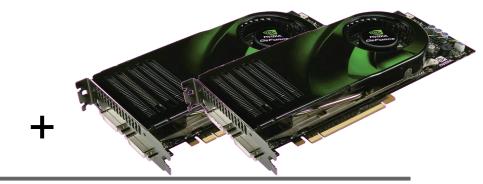
Research Staff Member – Database Technologies IBM Almaden Research Center *tkaldew@us.ibm.com*

+ **ORACLE**[®] special projects

Why Search ?

Honestly, how many times a day do you visit

+ **ORACLE**[®] special projects



+ **ORACLE**[®] special projects

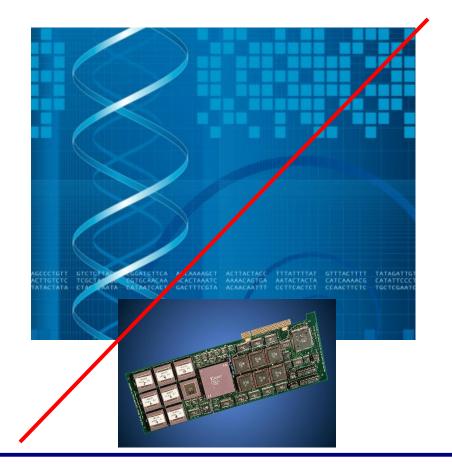
5

Agenda

- Introduction
 - GPU & DB search ?
- Porting search to the GPU using CUDA
 - Conventional search on GPU architecture a mismatch
 - Back to the drawing board:
 - P-ary search the algorithm
 - Experimental evaluation
 - Why it works
- Conclusions

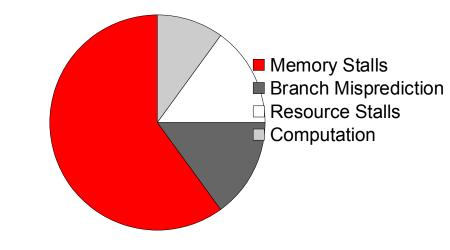
Database Workloads

- Data-intensive
- Processor performance is not a problem
- Sifting through large quantities of data fast enough is



DB Performance – Where does Time Go

- CPU? I/O? Memory ? 1
 - 10% indexed range selection



DB Performance – Where does Time Go

- CPU? I/O? Memory ? 1
 - 10% indexed range selection
- Memory Stalls Branch Misprediction **Resource Stalls** Computation **Relative Performance** 2x Every 2 Years **CPU** Frequency **DRAM** Speeds Gap

2x Every 6 Years

2000

1995

It's getting worse ²

¹ A. Ailamaki, et al. DBMSs on a modern processor: Where does time go? VLDB'99 ² David Yen. Opening Doors to the MultiCore Era. MultiCore Expo 2006

10000

1000

100

10

1

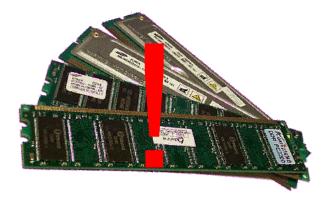
1980

1985

1990

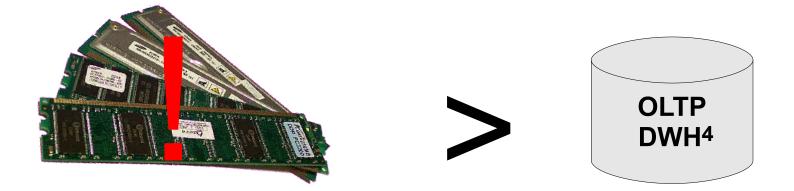
2005

DB Performance – "It's the memory stupid!" ³



DB Performance – "It's the memory stupid!" ³

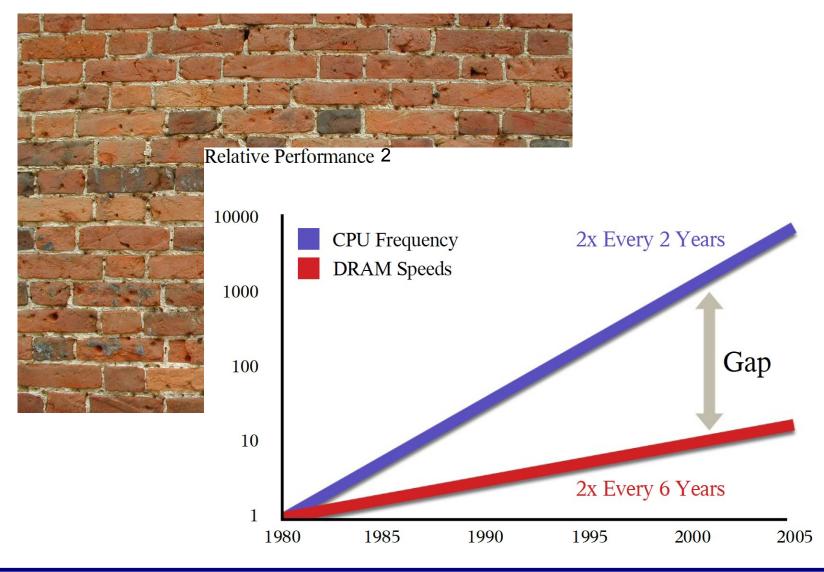
- And worse:
 - Growth rates of main memory size have outstripped the growth rates of structured data in the enterprise ⁴
 - Multiple GB main memory DB ...



³ R. Sites. It's the memory, stupid! MicroprocessorReport, 10(10),1996

⁴ K. Schlegel. Emerging Technologies Will Drive Self-Service Business Intelligence. Garter Report 2/08

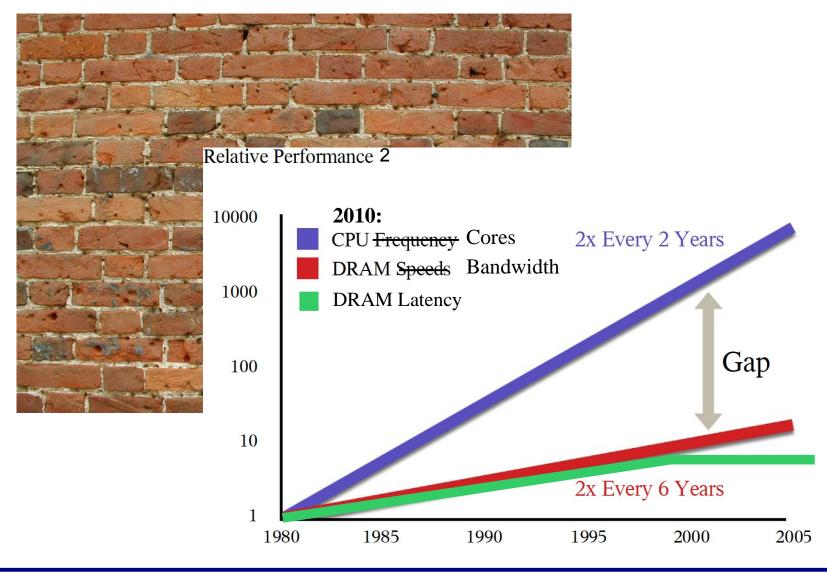
The (Memory) Wall ⁵



² David Yen. Opening Doors to the MultiCore Era. MultiCore Expo 2006

⁵ W.A.Wulf et al. Hitting the memory wall: implications of the obvious. SIGARCH - Computer Architecture News'95

The (Memory) Wall ⁵

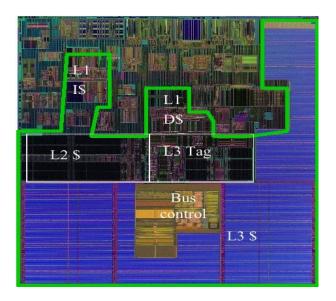


² David Yen. Opening Doors to the MultiCore Era. MultiCore Expo 2006

⁵ W.A.Wulf et al. Hitting the memory wall: implications of the obvious. SIGARCH - Computer Architecture News'95

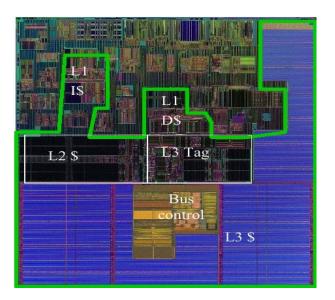
Overcoming the Memory Wall

- Larger caches
 - Specialized processors
 - Top10 TPC-H 6/10 use Itanium

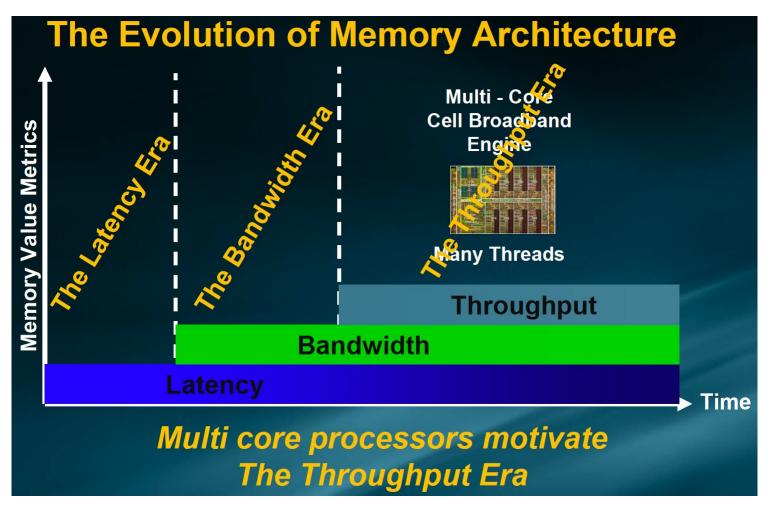


Overcoming the Memory Wall

- Larger caches
 - Specialized processors
 - Top10 TPC-H 6/10 use Itanium
- Wait it out?



Parallel Memory Accesses → Throughput Computing

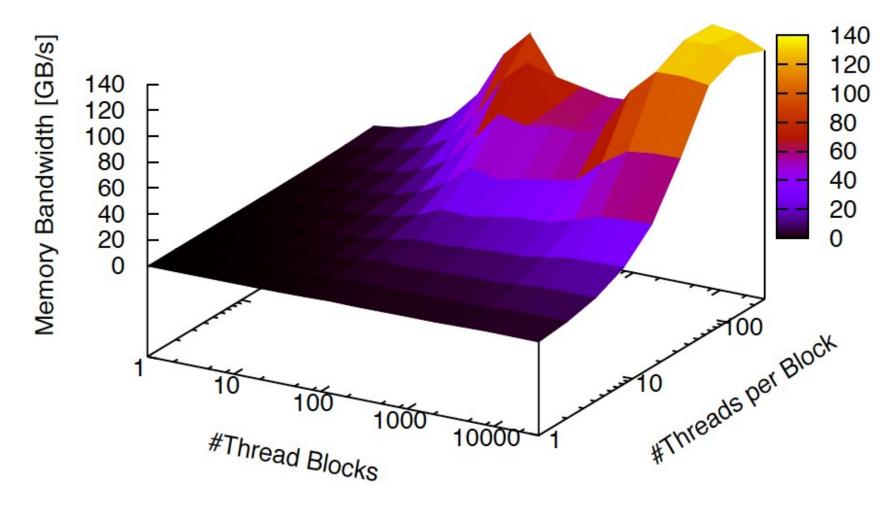


Source: Terabyte Bandwidth Initiative, Craig Hampel - Rambus, HotChips'08

GPUs as an example for highly parallel architectures

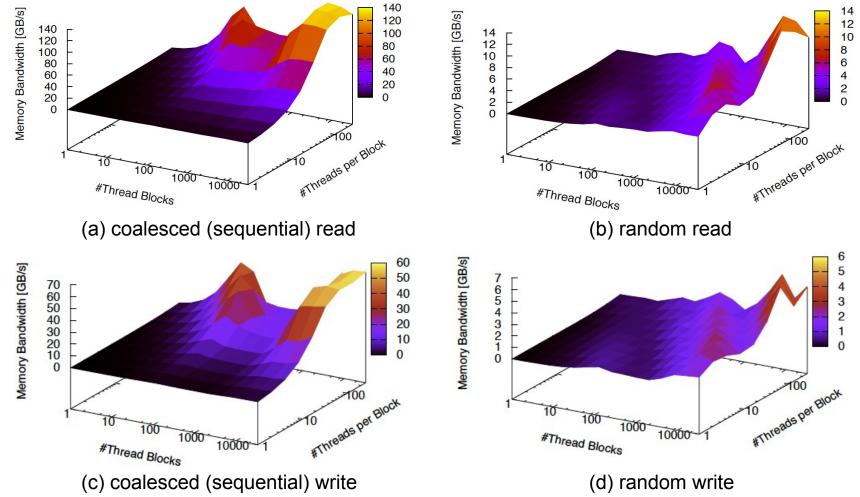
- Besides Teraflop(s) GPU's offer:
 - Massive Parallelism
 - 100+ GB/s memory bandwidth/throughput
 - Better performance per watt and per sqft.

GPU Memory bandwidth - ideal access pattern



Bandwidth of sequential (coalesced) 32-bit read access for multiple thread configurations. Results for a nVidia GTX 285 1.5GHz, GDDR3 1.2GHZ.

GPU Memory bandwidth



Parallel memory bandwidth for multiple thread configurations and access patterns. Results for a nVidia GTX 285 1.5GHz, GDDR3 1.2GHZ.

Agenda

- Introduction
 - GPU & DB (search)?
- Porting search to the GPU using CUDA
 - Conventional search and GPU architecture a mismatch
 - Back to the drawing board:
 - P-ary search the algorithm
 - Experimental evaluation
 - Why it works
- Conclusions

Conventional Search Algorithms are suboptimal

- "It's the memory stupid!"
 - Binary search means random access =(
 - B-tree search is (partially) sequential

but not amenable to coalescing

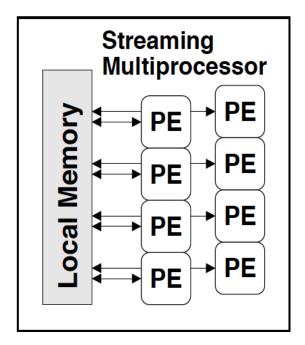
Conventional Search Algorithms are suboptimal

- "It's the memory stupid!"
 - Binary search means random access =(
 - B-tree search is (partially) sequential but not amenable to coalescing
- The CPU thread model "1 thread = 1 query" does not map well to the GPU as threads diverge
 - Produces random memory access pattern
 - It's a SIMD machine:

The larger the # threads the more likely it will take WCET to complete

GPU architecture reminder – SIMD/SIMT

- Inside Streaming Multiprocessor
 - Single Instruction Multiple Threads/Data (SIMT/SIMD)
 - All PEs in 1SM execute same instruction or no-op (SIMD threads)
 - Warps of 32 threads (or more to hide memory latency)



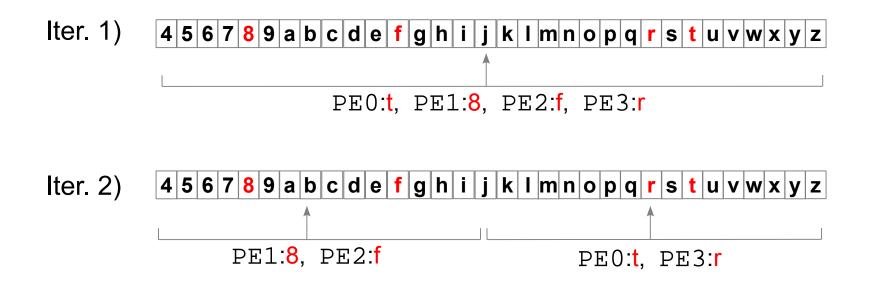
Multi-threaded Binary Search – Example

- 1 Index: a sorted char array 32 entries
- 4 queries: t , 8 , f , r
- 4 processors: PE 1-4
- 1 PE does 1 (binary) search: PE0:t, PE1:8, PE2:f, PE3:r
- Theoretical worst-case execution time (wcet): log₂(32)=5

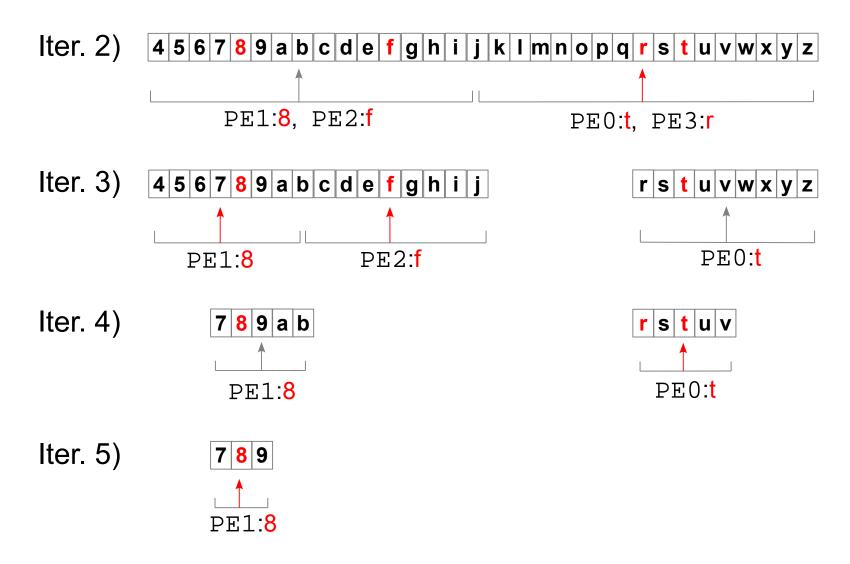
4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z

Multi-threaded Binary Search – Example

- 1 Index: a sorted char array 32 entries
- 4 queries: t, 8, f, r
- 4 processors: PE 1-4
- 1 PE does 1 (binary) search: PE0:t, PE1:8, PE2:f, PE3:r
- Theoretical worst-case execution time (wcet): log₂(32)=5



Multi-threaded Binary Search – Example



Conventional multi-threading – Analysis

- 100% utilization requires #PEs concurrent queries
- Queries finishing early
 → utilization < 100%
- Memory access collisions
 serialized memory access
- #memory accesses log₂(n)
- More threads
 - → more results
 - response time likely to be worst case, wcet = log₂(n)

How about improving wcet (latency)?

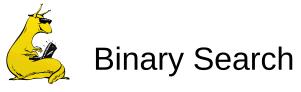
Agenda

- Introduction
 - GPU & DB (search) ?
- Porting search to the GPU using CUDA
 - Conventional search and GPU architecture a mismatch
 - Back to the drawing board:
 - P-ary search the algorithm
 - Experimental evaluation
 - Why it works
- Conclusions

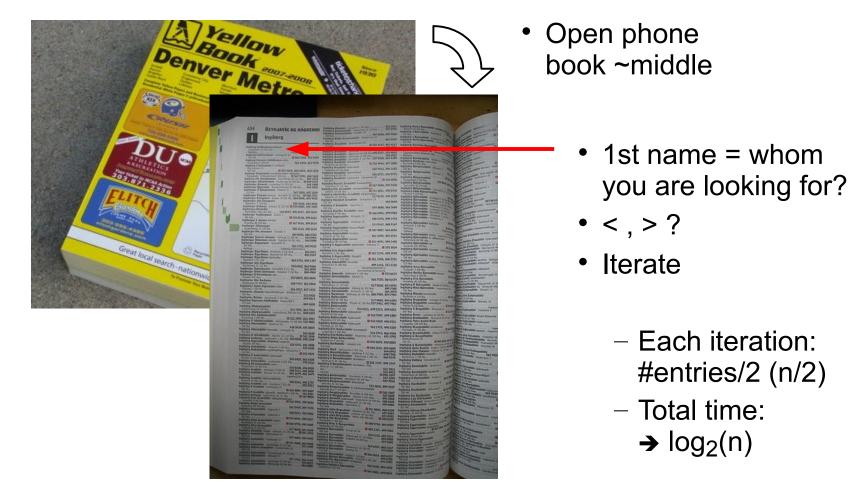
• Improve response time (latency) of core database functions like search in the era of throughput oriented (parallel) computing.

Research Question

- How can we (algorithmically) exploit parallelism to improve response time (of search)?
 - Can we trade-off throughput for latency?
 - Do we have to trade?



• How Do you (efficiently) search an index?



Parallel (Binary) Search

• What if you have some friends (3) to help you ?

• Divide et impera !

- Give each of them 1/4 *
- Each is using binary search takes $log_2(n/4)$
- All can work in parallel \rightarrow faster: $\log_2(n/4) < \log_2(n)$

Parallel (Binary) Search

• What if you have some friends (3) to help you ?

• Divide et impera !

- Give each of them 1/4 *
- Each is using binary search takes $log_2(n/4)$
- All can work in parallel \rightarrow faster: $\log_2(n/4) < \log_2(n)$
- 3 of you are wasting time !

• Divide et impera !!

• How do we know who has the right piece ?

• Divide et impera !!

• How do we know who has the right piece ?

- It's a sorted list:
 - Look at first and last entry of a subset
 - If first entry < searched name < last entry</p>
 - Redistribute
 - Otherwise ... throw it away
 - Iterate

• What do we get

- Each iteration: n/4
 → log₄(n)
- Assuming redistribution time is negligible: log₄(n) < log₂(n/4) < log₂(n)
- But each does 2 lookups !
- How time consuming are lookup and redistribution ?

II II memory synchronization access

• What do we get

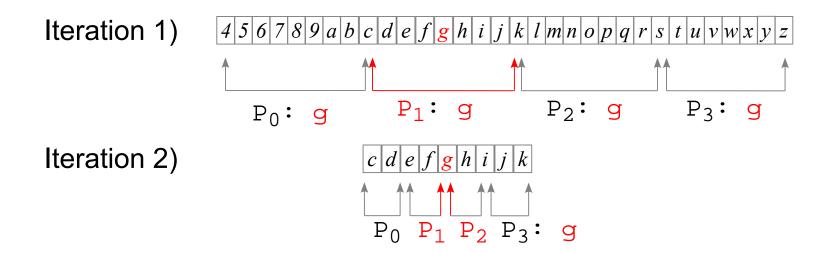
- Each iteration: n/4
 → log₄(n)
- Assuming redistribution time is negligible: log₄(n) < log₂(n/4) < log₂(n)
- But each does 2 lookups !
- How time consuming are lookup and redistribution ?

II II memory synchronization access

- Searching a database index can be implemented the same way
 - Friends = Processors (Threads)
 - Without destroying anything ;-)

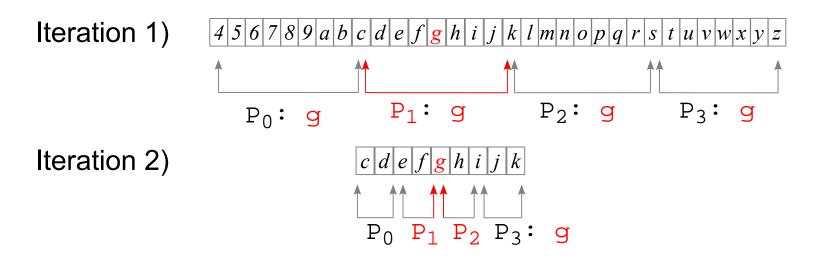
P-ary Search - Implementation

- Strongly relies on fast synchronization
 - # friends = threads / processor cores / vector elements



P-ary Search - Implementation

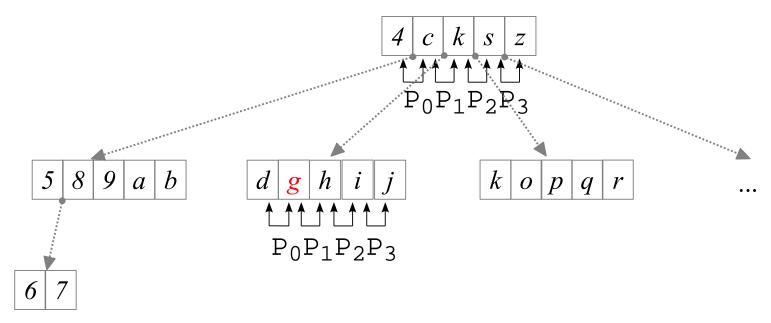
- Strongly relies on fast synchronization
 - # friends = threads / processor cores / vector elements



- Synchronization ~ repartition cost
 pthreads (\$\$), cmpxchng(\$),
 SIMD {SSE-vector, GPU threads via shared memory} (~0)
- Implementation using a B-tree is similar and (obviously) faster

P-ary Search - Implementation

- Performance depends on data structure
 - B-trees group pivot elements



- Linear memory accesses are fast
- Nodes can also be mapped to
 - Cache Lines (CSB+ trees)
 - Vectors (SSE)

P-ary search on a sorted list – Implementation (1)

```
_global__ void parySearchGPU(int* data , int range_length , int*
search keys , int* results)
```

```
int sk , old_range_length=range_length, range start ;
// initialize search range starting with the whole data set
// this is done by one thread
if (threadIdx.x==0) {
    range_offset=0;
    // cache search key and upper bound in shared memory
    cache[BLOCKSIZE]=0x7FFFFFF;
    cache[BLOCKSIZE+1]=searchkeys[blockIdx.x];
}
// require a sync, since each thread is going to
// read the above now
syncthreads (); sk = cache[BLOCKSIZE+1];
```

P-ary search on a sorted list – Implementation (2)

}

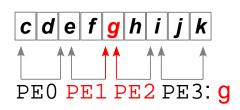
```
// repeat until found
while (range length>BLOCKSIZE) {
    // range voodo w/o floats
    range length = range length/BLOCKSIZE;
    if (range length * BLOCKSIZE < old range length)
        range length+=1;
    old range length=range length;
    range start = range offset + threadIdx.x * range length;
    // cache the boundary keys
    cache[threadIdx.x]=data[range start];
      syncthreads();
    // if the seached key is within this thread's subset,
    // make it the one for the next iteration
    if (sk>=cache[threadIdx.x] && sk<cache[threadIdx.x+1]) {
        range offset = range start;
    }
    // all threads need to start next iteration
    // with the new subset
    syncthreads();
```


}

P-ary search on a sorted list – Implementation (3)

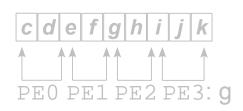
```
// last round
range_start = range_offset + threadIdx.x;
if (sk==data[range_start])
    results[blockIdx.x]=range_start;
```

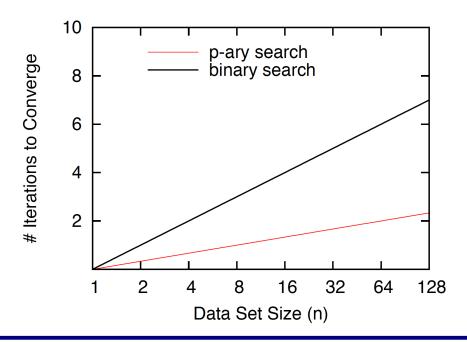

- 100% processor utilization for each query
- Multiple PEs can find a result
 - Does not change correctness



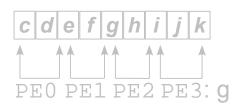
- 100% processor utilization for each query
- Multiple PEs can find a result

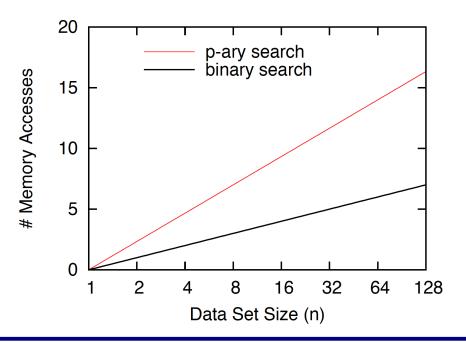
 Does not change correctness
- Convergence depends on #PEs GTX285: 1 SM, 8 PEs \rightarrow p=8
- Better Response time
 - $-\log_p(n) vs \log_2(n)$



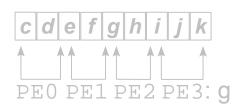


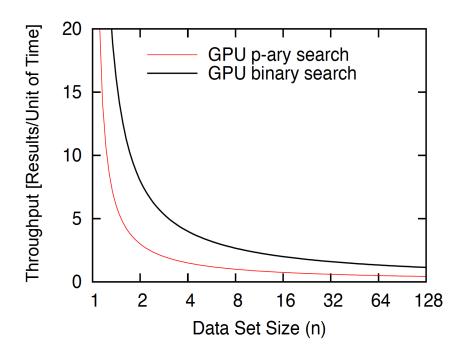
- 100% processor utilization for each query
- Multiple PEs can find a result
 - Does not change correctness
- Convergence depends on #PEs GTX285: 1 SM, 8 PEs \rightarrow p=8
- Better Response time
 log_p(n) vs log₂(n)
- More memory access
 - (p*2 per iteration) * $log_p(n)$
 - Caching
 (p-1) * log_p(n) vs. log₂(n)





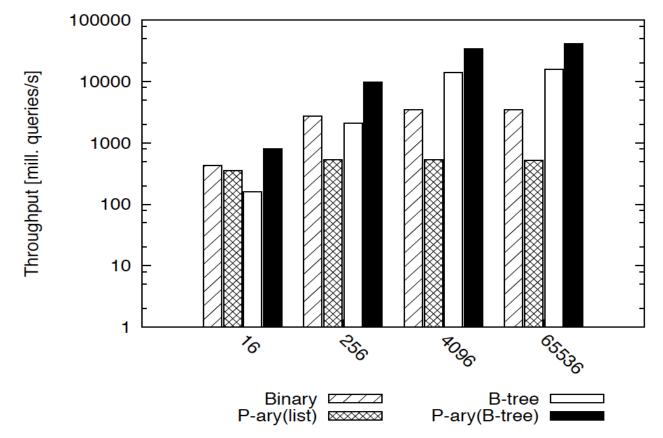
- 100% processor utilization for each query
- Multiple PEs can find a result
 - Does not change correctness
- Convergence depends on #PEs GTX285: 1 SM, 8 PEs \rightarrow p=8
- Better Response time
 log_p(n) vs log₂(n)
- More memory access
 - p*2 per iteration * log_p(n)
 - Caching
 (p-1) * log_p(n) vs. log₂(n)
- Lower Throughput
 - $1/log_p(n)$ vs $p/log_2(n)$





P-ary Search (GPU) – Throughput

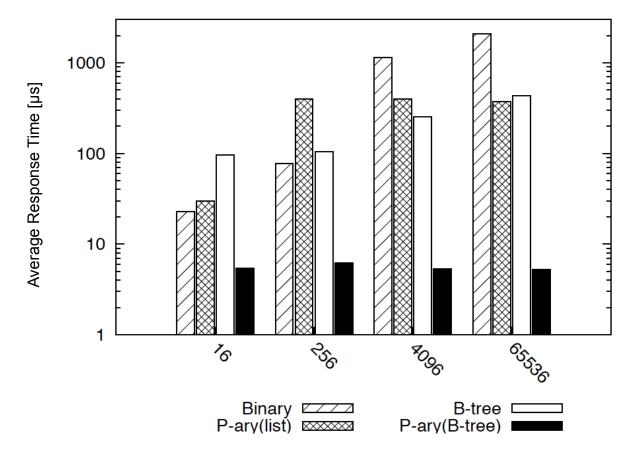
Superior throughput compared to conventional algorithms



Searching a 512MB data set with 134mill. 4-byte integer entries, Results for a nVidia GT200b, 1.5GHz, GDDR3 1.2GHz.

P-ary Search (GPU) – Response Time

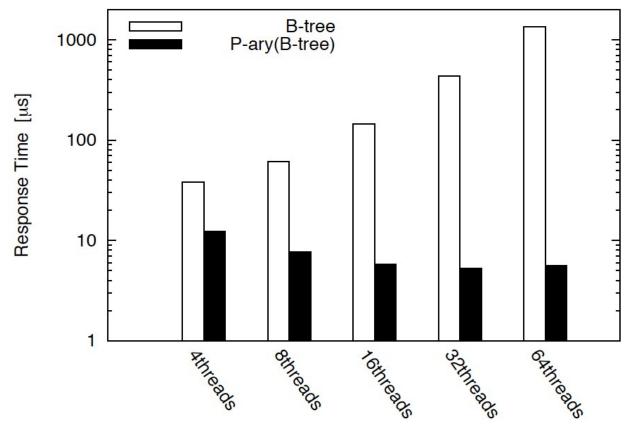
Response time is workload independent



Searching a 512MB data set with 134mill. 4-byte integer entries, Results for a nVidia GT200b, 1.5GHz, GDDR3 1.2GHz.

P-ary Search (GPU) – Scalability

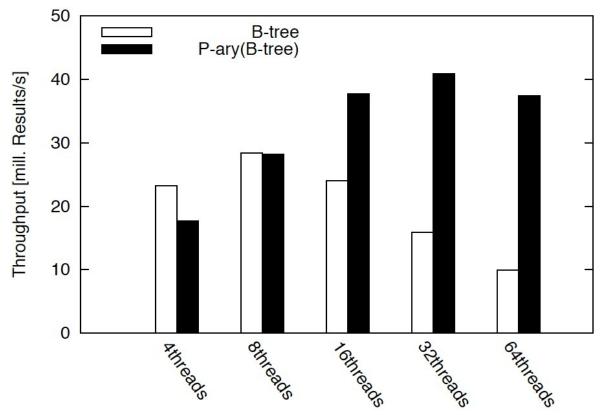
- GPU Implementation using SIMT (SIMD threads)
- Scalability with increasing #threads (P)



64K search queries against a 512MB data set with 134mill. 4-byte integer entries, Results for a nVidia GT200b, 1.5GHz, GDDR3 1.2GHz.

P-ary Search (GPU) – Scalability

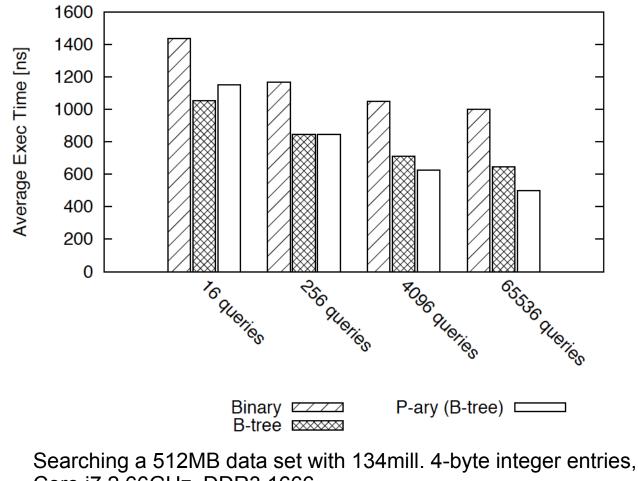
- GPU Implementation using SIMT (SIMD threads)
- Scalability with increasing #threads (P)



64K search queries against a 512MB data set with 134mill. 4-byte integer entries, Results for a nVidia GT200b, 1.5GHz, GDDR3 1.2GHz.

P-ary Search(CPU) = K-ary Search

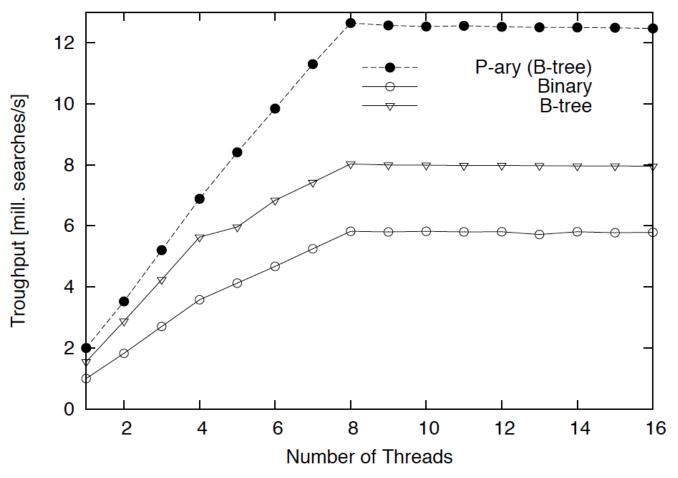
 K-ary¹ search is the same algorithm ported to the CPU using SSE vectors (int4) → convergence rate log4(n)



Core i7 2.66GHz, DDR3 1666.

¹ B. Schlegel, R. Gemulla, W. Lehner, k-Ary Search on Modern Processors, DaMoN 2000

- P-ary Search(CPU) = K-ary Search
- Throughput scales proportional to #threads



64K search queries against a 512MB data set with 134mill. 4-byte integer entries, Core i7 2.66GHz, DDR3 1666.

P-ary search - an architecture perspective

- Architecture trends
 - Memory latency has bottomed out more than a decade ago
 - Parallel memory bandwidth keeps increasing
 - e.g. Core 2 8GB/s, Core i7 24GB/s (10GB/s per core)
 - Multi-core is just the beginning, many-core is the future
 - Cache per core keeps decreasing (GPU, no caches)
 - Linear (coalesced) memory accesses take its place
 - Core/ thread synchronization costs keep decreasing

➔ Only thing to hope for are increases in parallel memory bandwidth

P-ary search - an architecture perspective

- Architecture trends
 - Memory latency has bottomed out more than a decade ago
 - Parallel memory bandwidth keeps increasing
 - e.g. Core 2 8GB/s, Core i7 24GB/s (10GB/s per core)
 - Multi-core is just the beginning, many-core is the future
 - Cache per core keeps decreasing (GPU, no caches)
 - Linear (coalesced) memory accesses take its place
 - Core/ thread synchronization costs keep decreasing
- ➔ Only thing to hope for are increases in parallel memory bandwidth
- P-ary search was designed under this premises and provides
 - Scalable performance fast thread synchronization
 - Reduced query response time parallel memory access
 - Increased throughput coalesced memory access
 - Workload independent constant query execution time

