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Quo Vadis ?

+    special projects 
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Why Search ?

Honestly, how many times a day do you visit

?
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Agenda
• Introduction

– GPU & DB search ?

• Porting search to the GPU using CUDA
– Conventional search on GPU architecture – a mismatch
– Back to the drawing board:

• P-ary search – the algorithm
• Experimental evaluation
• Why it works

• Conclusions
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Database Workloads
• Data-intensive
• Processor performance is not a problem
• Sifting through large quantities of data fast enough is

.
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DB Performance – Where does Time Go

• CPU? I/O? Memory ? 1

– 10% indexed range 
selection 

1 A. Ailamaki, et al. DBMSs on a modern processor: Where does time go? VLDB’99

Memory Stalls
Branch Misprediction
Resource Stalls
Computation
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DB Performance – Where does Time Go

• CPU? I/O? Memory ? 1

– 10% indexed range 
selection 

• It's getting worse 2

1 A. Ailamaki, et al. DBMSs on a modern processor: Where does time go? VLDB’99
2 David Yen. Opening Doors to the MultiCore Era. MultiCore Expo 2006

Memory Stalls
Branch Misprediction
Resource Stalls
Computation
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DB Performance – “It's the memory stupid!” 3

3 R. Sites. It’s the memory, stupid! MicroprocessorReport, 10(10),1996

!
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DB Performance – “It's the memory stupid!” 3

• And worse:
– Growth rates of main memory size have outstripped the 

growth rates of structured data in the enterprise 4

– Multiple GB main memory DB ...

3 R. Sites. It’s the memory, stupid! MicroprocessorReport, 10(10),1996 
4 K. Schlegel. Emerging Technologies Will Drive Self-Service Business Intelligence. Garter Report 2/08

OLTP
 DWH4

<!
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The (Memory) Wall 5

.
2 David Yen. Opening Doors to the MultiCore Era. MultiCore Expo 2006
5 W.A.Wulf et al. Hitting the memory wall: implications of the obvious. SIGARCH - Computer Architecture News'95

2
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The (Memory) Wall 5

.

2010:
       Cores
       Bandwidth

DRAM Latency

2 David Yen. Opening Doors to the MultiCore Era. MultiCore Expo 2006
5 W.A.Wulf et al. Hitting the memory wall: implications of the obvious. SIGARCH - Computer Architecture News'95

2
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Overcoming the Memory Wall

• Larger caches
– Specialized processors
– Top10 TPC-H – 6/10 use Itanium
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Overcoming the Memory Wall

• Larger caches
– Specialized processors
– Top10 TPC-H – 6/10 use Itanium

• Wait it out?
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Parallel Memory Accesses è Throughput Computing

Source: Terabyte Bandwidth Initiative, Craig Hampel - Rambus, HotChips'08
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GPUs as an example for highly parallel architectures

• Besides Teraflop(s) GPU's offer:
– Massive Parallelism
– 100+ GB/s memory bandwidth/throughput
– Better performance per watt and per sqft.
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GPU Memory bandwidth – ideal access pattern

Bandwidth of sequential (coalesced) 32-bit read access for multiple thread configurations. 
Results for a nVidia GTX 285 1.5GHz, GDDR3 1.2GHZ.
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GPU Memory bandwidth

Parallel memory bandwidth for multiple thread configurations and access patterns. Results 
for a nVidia GTX 285 1.5GHz, GDDR3 1.2GHZ.

(a) coalesced (sequential) read      (b) random read

(c) coalesced (sequential) write      (d) random write
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Agenda
• Introduction

– GPU & DB (search) ?

• Porting search to the GPU using CUDA
– Conventional search and GPU architecture – a mismatch
– Back to the drawing board:

• P-ary search – the algorithm
• Experimental evaluation
• Why it works

• Conclusions



21

Conventional Search Algorithms are suboptimal
• “It's the memory stupid!”

– Binary search means random access =(
– B-tree search is (partially) sequential

but not amenable to coalescing
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Conventional Search Algorithms are suboptimal
• “It's the memory stupid!”

– Binary search means random access =(
– B-tree search is (partially) sequential

but not amenable to coalescing
• The CPU thread model “1 thread = 1 query” does not map well to 

the GPU as threads diverge
– Produces random memory access pattern
– It's a SIMD machine:             

The larger the # threads the more likely it will take WCET to 
complete
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GPU architecture reminder – SIMD/SIMT

• Inside Streaming Multiprocessor
– Single Instruction Multiple Threads/Data (SIMT/SIMD)
– All PEs in 1SM execute same instruction or no-op 

(SIMD threads)
– Warps of 32 threads (or more to hide memory latency)
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Multi-threaded Binary Search – Example

• 1 Index:  a sorted char array 32 entries
• 4 queries:  t , 8 , f , r
• 4 processors:  PE 1-4
• 1 PE does 1 (binary) search:  PE0:t , PE1:8 , PE2:f , PE3:r

• Theoretical worst-case execution time (wcet): log2(32)=5

a b c d e f g h i j k l m n o p q r s t u v w x y z4 5 6 7 8 9
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Multi-threaded Binary Search – Example

• 1 Index:  a sorted char array 32 entries
• 4 queries:  t , 8 , f , r
• 4 processors:  PE 1-4
• 1 PE does 1 (binary) search:  PE0:t , PE1:8 , PE2:f , PE3:r

• Theoretical worst-case execution time (wcet): log2(32)=5

a b c d e f g h i j k l m n o p q r s t u v w x y z4 5 6 7 8 9

PE0:t,  PE1:8,  PE2:f,  PE3:r

Iter. 1)

PE1:8,  PE2:f PE0:t,  PE3:r

Iter. 2) a b c d e f g h i j k l m n o p q r s t u v w x y z4 5 6 7 8 9
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Multi-threaded Binary Search – Example

PE1:8,  PE2:f PE0:t,  PE3:r

Iter. 2) a b c d e f g h i j k l m n o p q r s t u v w x y z4 5 6 7 8 9

a b c d e f g h i j r s t u v w x y z4 5 6 7 8 9

PE1:8 PE0:tPE2:f

r s t u v

PE0:t

a b7 8 9

PE1:8

Iter. 3)

Iter. 4)

Iter. 5) 7 8 9

PE1:8
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Conventional multi-threading – Analysis

• 100% utilization requires    
#PEs concurrent queries

• Queries finishing early

     è utilization < 100%
• Memory access collisions

     è serialized memory access
• #memory accesses log2(n)

• More threads                        
  è more results

     è response time likely to be 
worst case, wcet = log2(n)

How about improving wcet (latency)?
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Agenda
• Introduction

– GPU & DB (search) ?

• Porting search to the GPU using CUDA
– Conventional search and GPU architecture – a mismatch
– Back to the drawing board:

• P-ary search – the algorithm
• Experimental evaluation
• Why it works

• Conclusions
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Our Goal

• Improve response time (latency) of core database functions like 
search in the era of throughput oriented (parallel) computing.

Research Question

• How can we (algorithmically) exploit parallelism to improve 
response time (of search)?
– Can we trade-off throughput for latency?
– Do we have to trade? 
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Binary Search

• How Do you (efficiently) search an index?

• 1st name = whom    
you are looking for?

• < , > ?
• Iterate

– Each iteration:  
#entries/2 (n/2)

– Total time:          
è log2(n)

• Open phone 
book ~middle
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Parallel (Binary) Search

• What if you have some friends (3) to help you ?

• Give each of them ¼ *

* You probably want to tear it a little more intelligent than that, e.g. at the binding ;-)

• Divide et impera !

– Each is using binary search takes log2(n/4)

– All can work in parallel è faster:  log2(n/4) < log2(n)
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Parallel (Binary) Search

• What if you have some friends (3) to help you ?

• Give each of them ¼ *

* You probably want to tear it a little more intelligent than that, e.g. at the binding ;-)

• Divide et impera !

– Each is using binary search takes log2(n/4)

– All can work in parallel è faster:  log2(n/4) < log2(n)

– 3 of you are wasting time !



33

P-ary Search

• Divide et impera !!

...

• How do we know who has the right piece ?
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P-ary Search

• Divide et impera !!

...

• It's a sorted list:
– Look at first and last entry of a subset
– If first entry < searched name < last entry

• Redistribute
• Otherwise … throw it away

– Iterate

• How do we know who has the right piece ?
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P-ary Search

• What do we get
• Each iteration: n/4                

è log4(n)

• Assuming redistribution      
time is negligible:                  
log4(n) < log2(n/4) < log2(n)

• But each does 2 lookups !
• How time consuming are 

lookup and redistribution ?

+

memory 
access

synchronization

= =
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P-ary Search

• What do we get
• Each iteration: n/4                

è log4(n)

• Assuming redistribution      
time is negligible:                  
log4(n) < log2(n/4) < log2(n)

• But each does 2 lookups !
• How time consuming are 

lookup and redistribution ?

+

• Searching a database index can be implemented the same way
– Friends = Processors (Threads)
– Without destroying anything ;-)

memory 
access

synchronization

= =
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P-ary Search - Implementation 

• Strongly relies on fast synchronization
– # friends = threads / processor cores / vector elements

        Iteration 1)

        Iteration 2)

a b c d e f g h i j k l m n o p q r s t u v w x y z4 5 6 7 8 9

P0: g P1: g P2: g P3: g

 P0 P1 P2 P3: g

c d e f g h i j k
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P-ary Search - Implementation 

• Strongly relies on fast synchronization
– # friends = threads / processor cores / vector elements

        Iteration 1)

        Iteration 2)

– Synchronization ~ repartition cost
pthreads ($$), cmpxchng($), 

        SIMD {SSE-vector, GPU threads via shared memory} (~0)

• Implementation using a B-tree is similar and (obviously) faster

a b c d e f g h i j k l m n o p q r s t u v w x y z4 5 6 7 8 9

P0: g P1: g P2: g P3: g

 P0 P1 P2 P3: g

c d e f g h i j k
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• Performance depends on data structure
– B-trees group pivot elements

P-ary Search - Implementation 

d g h i j k o p q r

4 c k s z

5 8 9 a b

6 7

...

P0P1P2P3

P0P1P2P3

– Linear memory accesses are fast
– Nodes can also be mapped to

• Cache Lines (CSB+ trees)
• Vectors (SSE)
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P-ary search on a sorted list – Implementation (1)

__global__ void parySearchGPU(int∗ data , int range_length , int∗ 
                              search keys , int∗ results)

   int sk , old_range_length=range_length, range start ; 
   // initialize search range starting with the whole data set 
   // this is done by one thread
   if (threadIdx.x==0) {
      range_offset=0;
      // cache search key and upper bound in shared memory
      cache[BLOCKSIZE]=0x7FFFFFFF;
      cache[BLOCKSIZE+1]=searchkeys[blockIdx.x];
   }
   // require a sync, since each thread is going to
   // read the above now
   syncthreads (); sk = cache[BLOCKSIZE+1];
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P-ary search on a sorted list – Implementation (2)

    // repeat until found
    while (range_length>BLOCKSIZE){
        // range voodo w/o floats
        range_length = range_length/BLOCKSIZE;
        if (range_length * BLOCKSIZE < old_range_length)
            range_length+=1;
        old_range_length=range_length;

        range_start = range_offset + threadIdx.x * range_length;
        // cache the boundary keys
        cache[threadIdx.x]=data[range_start];
        __syncthreads();

        // if the seached key is within this thread's subset,
        // make it the one for the next iteration
        if (sk>=cache[threadIdx.x] && sk<cache[threadIdx.x+1]){
            range_offset = range_start;
        }
        // all threads need to start next iteration

// with the new subset
        __syncthreads();
    }
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P-ary search on a sorted list – Implementation (3)

    // last round
    range_start = range_offset + threadIdx.x;
    if (sk==data[range_start])
        results[blockIdx.x]=range_start;
    }
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P-ary Search – Analysis

• 100% processor utilization for each query
• Multiple PEs can find a result

– Does not change correctness

c d e f g h i j

PE0 PE1 PE2 PE3: g

k
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P-ary Search – Analysis

• 100% processor utilization for each query
• Multiple PEs can find a result

– Does not change correctness
• Convergence depends on #PEs

GTX285: 1 SM, 8 PEs → p=8
• Better Response time

– logp(n) vs log2(n)

c d e f g h i j

PE0 PE1 PE2 PE3: g

k
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P-ary Search – Analysis

• 100% processor utilization for each query
• Multiple PEs can find a result

– Does not change correctness
• Convergence depends on #PEs

   GTX285: 1 SM, 8 PEs → p=8
• Better Response time

– logp(n) vs log2(n)

• More memory access
– (p*2 per iteration) * logp(n)

– Caching
(p-1) * logp(n) vs. log2(n)

c d e f g h i j

PE0 PE1 PE2 PE3: g

k
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P-ary Search – Analysis

• 100% processor utilization for each query
• Multiple PEs can find a result

– Does not change correctness
• Convergence depends on #PEs

   GTX285: 1 SM, 8 PEs → p=8
• Better Response time

– logp(n) vs log2(n)

• More memory access
– p*2 per iteration * logp(n)

– Caching
(p-1) * logp(n) vs. log2(n)

• Lower Throughput

– 1/logp(n)  vs  p/log2(n)

c d e f g h i j

PE0 PE1 PE2 PE3: g

k
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P-ary Search (GPU) – Throughput

Searching a 512MB data set with 134mill. 4-byte integer entries,
Results for a nVidia GT200b, 1.5GHz, GDDR3 1.2GHz.

• Superior throughput compared to conventional algorithms
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P-ary Search (GPU) – Response Time

Searching a 512MB data set with 134mill. 4-byte integer entries,
Results for a nVidia GT200b, 1.5GHz, GDDR3 1.2GHz.

• Response time is workload independent 
A
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P-ary Search (GPU) – Scalability 

64K search queries against a 512MB data set with 134mill. 4-byte integer entries, 
Results for a nVidia GT200b, 1.5GHz, GDDR3 1.2GHz.

• GPU Implementation using SIMT (SIMD threads)
• Scalability with increasing #threads (P)
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64K search queries against a 512MB data set with 134mill. 4-byte integer entries, 
Results for a nVidia GT200b, 1.5GHz, GDDR3 1.2GHz.

• GPU Implementation using SIMT (SIMD threads)
• Scalability with increasing #threads (P)

P-ary Search (GPU) – Scalability 
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P-ary Search(CPU) = K-ary Search 

Searching a 512MB data set with 134mill. 4-byte integer entries,
Core i7 2.66GHz, DDR3 1666.

• K-ary1 search is the same algorithm ported to the CPU using 
SSE vectors (int4) → convergence rate log4(n)

1 B. Schlegel, R. Gemulla, W. Lehner, k-Ary Search on Modern Processors, DaMoN 2000
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P-ary Search(CPU) = K-ary Search

64K search queries against a 512MB data set with 134mill. 4-byte integer entries, 
Core i7 2.66GHz, DDR3 1666.

• Throughput scales proportional to #threads

1 B. Schlegel, R. Gemulla, W. Lehner, k-Ary Search on Modern Processors, DaMoN 2000
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P-ary search - an architecture perspective

• Architecture trends
– Memory latency has bottomed out more than a decade ago
– Parallel memory bandwidth keeps increasing

• e.g. Core 2 8GB/s, Core i7 24GB/s (10GB/s per core)
– Multi-core is just the beginning, many-core is the future
– Cache per core keeps decreasing (GPU, no caches)

• Linear (coalesced) memory accesses take its place
– Core/ thread synchronization costs keep decreasing

➔ Only thing to hope for are increases in parallel memory bandwidth
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P-ary search - an architecture perspective

• Architecture trends
– Memory latency has bottomed out more than a decade ago
– Parallel memory bandwidth keeps increasing

• e.g. Core 2 8GB/s, Core i7 24GB/s (10GB/s per core)
– Multi-core is just the beginning, many-core is the future
– Cache per core keeps decreasing (GPU, no caches)

• Linear (coalesced) memory accesses take its place
– Core/ thread synchronization costs keep decreasing

➔ Only thing to hope for are increases in parallel memory bandwidth

• P-ary search was designed under this premises and provides 
– Scalable performance – fast thread synchronization
– Reduced query response time – parallel memory access
– Increased throughput – coalesced memory access
– Workload independent constant query execution time 



55

Questions
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