
Programming GPUs for database 
applications

- outsourcing index search operations

Research Staff Member – Database Technologies
IBM Almaden Research Center
tkaldew@us.ibm.com

Tim Kaldewey



2

Quo Vadis ?

+    special projects 



3

Why Search ?

Honestly, how many times a day do you visit

?



4

Quo Vadis ?

+ 

+    special projects 



5

Quo Vadis ?

+ 

=         ? 

+    special projects 



6

Agenda
• Introduction

– GPU & DB search ?

• Porting search to the GPU using CUDA
– Conventional search on GPU architecture – a mismatch
– Back to the drawing board:

• P-ary search – the algorithm
• Experimental evaluation
• Why it works

• Conclusions



7

Database Workloads
• Data-intensive
• Processor performance is not a problem
• Sifting through large quantities of data fast enough is

.



8

DB Performance – Where does Time Go

• CPU? I/O? Memory ? 1

– 10% indexed range 
selection 

1 A. Ailamaki, et al. DBMSs on a modern processor: Where does time go? VLDB’99

Memory Stalls
Branch Misprediction
Resource Stalls
Computation



9

DB Performance – Where does Time Go

• CPU? I/O? Memory ? 1

– 10% indexed range 
selection 

• It's getting worse 2

1 A. Ailamaki, et al. DBMSs on a modern processor: Where does time go? VLDB’99
2 David Yen. Opening Doors to the MultiCore Era. MultiCore Expo 2006

Memory Stalls
Branch Misprediction
Resource Stalls
Computation



10

DB Performance – “It's the memory stupid!” 3

3 R. Sites. It’s the memory, stupid! MicroprocessorReport, 10(10),1996

!



11

DB Performance – “It's the memory stupid!” 3

• And worse:
– Growth rates of main memory size have outstripped the 

growth rates of structured data in the enterprise 4

– Multiple GB main memory DB ...

3 R. Sites. It’s the memory, stupid! MicroprocessorReport, 10(10),1996 
4 K. Schlegel. Emerging Technologies Will Drive Self-Service Business Intelligence. Garter Report 2/08

OLTP
 DWH4

<!



12

The (Memory) Wall 5

.
2 David Yen. Opening Doors to the MultiCore Era. MultiCore Expo 2006
5 W.A.Wulf et al. Hitting the memory wall: implications of the obvious. SIGARCH - Computer Architecture News'95

2



13

The (Memory) Wall 5

.

2010:
       Cores
       Bandwidth

DRAM Latency

2 David Yen. Opening Doors to the MultiCore Era. MultiCore Expo 2006
5 W.A.Wulf et al. Hitting the memory wall: implications of the obvious. SIGARCH - Computer Architecture News'95

2



14

Overcoming the Memory Wall

• Larger caches
– Specialized processors
– Top10 TPC-H – 6/10 use Itanium



15

Overcoming the Memory Wall

• Larger caches
– Specialized processors
– Top10 TPC-H – 6/10 use Itanium

• Wait it out?



16

Parallel Memory Accesses è Throughput Computing

Source: Terabyte Bandwidth Initiative, Craig Hampel - Rambus, HotChips'08



17

GPUs as an example for highly parallel architectures

• Besides Teraflop(s) GPU's offer:
– Massive Parallelism
– 100+ GB/s memory bandwidth/throughput
– Better performance per watt and per sqft.



18

GPU Memory bandwidth – ideal access pattern

Bandwidth of sequential (coalesced) 32-bit read access for multiple thread configurations. 
Results for a nVidia GTX 285 1.5GHz, GDDR3 1.2GHZ.



19

GPU Memory bandwidth

Parallel memory bandwidth for multiple thread configurations and access patterns. Results 
for a nVidia GTX 285 1.5GHz, GDDR3 1.2GHZ.

(a) coalesced (sequential) read      (b) random read

(c) coalesced (sequential) write      (d) random write



20

Agenda
• Introduction

– GPU & DB (search) ?

• Porting search to the GPU using CUDA
– Conventional search and GPU architecture – a mismatch
– Back to the drawing board:

• P-ary search – the algorithm
• Experimental evaluation
• Why it works

• Conclusions



21

Conventional Search Algorithms are suboptimal
• “It's the memory stupid!”

– Binary search means random access =(
– B-tree search is (partially) sequential

but not amenable to coalescing



22

Conventional Search Algorithms are suboptimal
• “It's the memory stupid!”

– Binary search means random access =(
– B-tree search is (partially) sequential

but not amenable to coalescing
• The CPU thread model “1 thread = 1 query” does not map well to 

the GPU as threads diverge
– Produces random memory access pattern
– It's a SIMD machine:             

The larger the # threads the more likely it will take WCET to 
complete



23

GPU architecture reminder – SIMD/SIMT

• Inside Streaming Multiprocessor
– Single Instruction Multiple Threads/Data (SIMT/SIMD)
– All PEs in 1SM execute same instruction or no-op 

(SIMD threads)
– Warps of 32 threads (or more to hide memory latency)



24

Multi-threaded Binary Search – Example

• 1 Index:  a sorted char array 32 entries
• 4 queries:  t , 8 , f , r
• 4 processors:  PE 1-4
• 1 PE does 1 (binary) search:  PE0:t , PE1:8 , PE2:f , PE3:r

• Theoretical worst-case execution time (wcet): log2(32)=5

a b c d e f g h i j k l m n o p q r s t u v w x y z4 5 6 7 8 9



25

Multi-threaded Binary Search – Example

• 1 Index:  a sorted char array 32 entries
• 4 queries:  t , 8 , f , r
• 4 processors:  PE 1-4
• 1 PE does 1 (binary) search:  PE0:t , PE1:8 , PE2:f , PE3:r

• Theoretical worst-case execution time (wcet): log2(32)=5

a b c d e f g h i j k l m n o p q r s t u v w x y z4 5 6 7 8 9

PE0:t,  PE1:8,  PE2:f,  PE3:r

Iter. 1)

PE1:8,  PE2:f PE0:t,  PE3:r

Iter. 2) a b c d e f g h i j k l m n o p q r s t u v w x y z4 5 6 7 8 9



26

Multi-threaded Binary Search – Example

PE1:8,  PE2:f PE0:t,  PE3:r

Iter. 2) a b c d e f g h i j k l m n o p q r s t u v w x y z4 5 6 7 8 9

a b c d e f g h i j r s t u v w x y z4 5 6 7 8 9

PE1:8 PE0:tPE2:f

r s t u v

PE0:t

a b7 8 9

PE1:8

Iter. 3)

Iter. 4)

Iter. 5) 7 8 9

PE1:8



27

Conventional multi-threading – Analysis

• 100% utilization requires    
#PEs concurrent queries

• Queries finishing early

     è utilization < 100%
• Memory access collisions

     è serialized memory access
• #memory accesses log2(n)

• More threads                        
  è more results

     è response time likely to be 
worst case, wcet = log2(n)

How about improving wcet (latency)?



28

Agenda
• Introduction

– GPU & DB (search) ?

• Porting search to the GPU using CUDA
– Conventional search and GPU architecture – a mismatch
– Back to the drawing board:

• P-ary search – the algorithm
• Experimental evaluation
• Why it works

• Conclusions



29

Our Goal

• Improve response time (latency) of core database functions like 
search in the era of throughput oriented (parallel) computing.

Research Question

• How can we (algorithmically) exploit parallelism to improve 
response time (of search)?
– Can we trade-off throughput for latency?
– Do we have to trade? 



30

Binary Search

• How Do you (efficiently) search an index?

• 1st name = whom    
you are looking for?

• < , > ?
• Iterate

– Each iteration:  
#entries/2 (n/2)

– Total time:          
è log2(n)

• Open phone 
book ~middle



31

Parallel (Binary) Search

• What if you have some friends (3) to help you ?

• Give each of them ¼ *

* You probably want to tear it a little more intelligent than that, e.g. at the binding ;-)

• Divide et impera !

– Each is using binary search takes log2(n/4)

– All can work in parallel è faster:  log2(n/4) < log2(n)



32

Parallel (Binary) Search

• What if you have some friends (3) to help you ?

• Give each of them ¼ *

* You probably want to tear it a little more intelligent than that, e.g. at the binding ;-)

• Divide et impera !

– Each is using binary search takes log2(n/4)

– All can work in parallel è faster:  log2(n/4) < log2(n)

– 3 of you are wasting time !



33

P-ary Search

• Divide et impera !!

...

• How do we know who has the right piece ?



34

P-ary Search

• Divide et impera !!

...

• It's a sorted list:
– Look at first and last entry of a subset
– If first entry < searched name < last entry

• Redistribute
• Otherwise … throw it away

– Iterate

• How do we know who has the right piece ?



35

P-ary Search

• What do we get
• Each iteration: n/4                

è log4(n)

• Assuming redistribution      
time is negligible:                  
log4(n) < log2(n/4) < log2(n)

• But each does 2 lookups !
• How time consuming are 

lookup and redistribution ?

+

memory 
access

synchronization

= =



36

P-ary Search

• What do we get
• Each iteration: n/4                

è log4(n)

• Assuming redistribution      
time is negligible:                  
log4(n) < log2(n/4) < log2(n)

• But each does 2 lookups !
• How time consuming are 

lookup and redistribution ?

+

• Searching a database index can be implemented the same way
– Friends = Processors (Threads)
– Without destroying anything ;-)

memory 
access

synchronization

= =



37

P-ary Search - Implementation 

• Strongly relies on fast synchronization
– # friends = threads / processor cores / vector elements

        Iteration 1)

        Iteration 2)

a b c d e f g h i j k l m n o p q r s t u v w x y z4 5 6 7 8 9

P0: g P1: g P2: g P3: g

 P0 P1 P2 P3: g

c d e f g h i j k



38

P-ary Search - Implementation 

• Strongly relies on fast synchronization
– # friends = threads / processor cores / vector elements

        Iteration 1)

        Iteration 2)

– Synchronization ~ repartition cost
pthreads ($$), cmpxchng($), 

        SIMD {SSE-vector, GPU threads via shared memory} (~0)

• Implementation using a B-tree is similar and (obviously) faster

a b c d e f g h i j k l m n o p q r s t u v w x y z4 5 6 7 8 9

P0: g P1: g P2: g P3: g

 P0 P1 P2 P3: g

c d e f g h i j k



39

• Performance depends on data structure
– B-trees group pivot elements

P-ary Search - Implementation 

d g h i j k o p q r

4 c k s z

5 8 9 a b

6 7

...

P0P1P2P3

P0P1P2P3

– Linear memory accesses are fast
– Nodes can also be mapped to

• Cache Lines (CSB+ trees)
• Vectors (SSE)



40

P-ary search on a sorted list – Implementation (1)

__global__ void parySearchGPU(int∗ data , int range_length , int∗ 
                              search keys , int∗ results)

   int sk , old_range_length=range_length, range start ; 
   // initialize search range starting with the whole data set 
   // this is done by one thread
   if (threadIdx.x==0) {
      range_offset=0;
      // cache search key and upper bound in shared memory
      cache[BLOCKSIZE]=0x7FFFFFFF;
      cache[BLOCKSIZE+1]=searchkeys[blockIdx.x];
   }
   // require a sync, since each thread is going to
   // read the above now
   syncthreads (); sk = cache[BLOCKSIZE+1];



41

P-ary search on a sorted list – Implementation (2)

    // repeat until found
    while (range_length>BLOCKSIZE){
        // range voodo w/o floats
        range_length = range_length/BLOCKSIZE;
        if (range_length * BLOCKSIZE < old_range_length)
            range_length+=1;
        old_range_length=range_length;

        range_start = range_offset + threadIdx.x * range_length;
        // cache the boundary keys
        cache[threadIdx.x]=data[range_start];
        __syncthreads();

        // if the seached key is within this thread's subset,
        // make it the one for the next iteration
        if (sk>=cache[threadIdx.x] && sk<cache[threadIdx.x+1]){
            range_offset = range_start;
        }
        // all threads need to start next iteration

// with the new subset
        __syncthreads();
    }



42

P-ary search on a sorted list – Implementation (3)

    // last round
    range_start = range_offset + threadIdx.x;
    if (sk==data[range_start])
        results[blockIdx.x]=range_start;
    }



43

P-ary Search – Analysis

• 100% processor utilization for each query
• Multiple PEs can find a result

– Does not change correctness

c d e f g h i j

PE0 PE1 PE2 PE3: g

k



44

P-ary Search – Analysis

• 100% processor utilization for each query
• Multiple PEs can find a result

– Does not change correctness
• Convergence depends on #PEs

GTX285: 1 SM, 8 PEs → p=8
• Better Response time

– logp(n) vs log2(n)

c d e f g h i j

PE0 PE1 PE2 PE3: g

k



45

P-ary Search – Analysis

• 100% processor utilization for each query
• Multiple PEs can find a result

– Does not change correctness
• Convergence depends on #PEs

   GTX285: 1 SM, 8 PEs → p=8
• Better Response time

– logp(n) vs log2(n)

• More memory access
– (p*2 per iteration) * logp(n)

– Caching
(p-1) * logp(n) vs. log2(n)

c d e f g h i j

PE0 PE1 PE2 PE3: g

k



46

P-ary Search – Analysis

• 100% processor utilization for each query
• Multiple PEs can find a result

– Does not change correctness
• Convergence depends on #PEs

   GTX285: 1 SM, 8 PEs → p=8
• Better Response time

– logp(n) vs log2(n)

• More memory access
– p*2 per iteration * logp(n)

– Caching
(p-1) * logp(n) vs. log2(n)

• Lower Throughput

– 1/logp(n)  vs  p/log2(n)

c d e f g h i j

PE0 PE1 PE2 PE3: g

k

T
h

ro
ug

h
pu

t 
[R

es
u

lts
/U

ni
t o

f T
im

e]



47

P-ary Search (GPU) – Throughput

Searching a 512MB data set with 134mill. 4-byte integer entries,
Results for a nVidia GT200b, 1.5GHz, GDDR3 1.2GHz.

• Superior throughput compared to conventional algorithms



48

P-ary Search (GPU) – Response Time

Searching a 512MB data set with 134mill. 4-byte integer entries,
Results for a nVidia GT200b, 1.5GHz, GDDR3 1.2GHz.

• Response time is workload independent 
A

ve
ra

g
e 

R
e

sp
on

se
 T

im
e

 [μ
s]



49

P-ary Search (GPU) – Scalability 

64K search queries against a 512MB data set with 134mill. 4-byte integer entries, 
Results for a nVidia GT200b, 1.5GHz, GDDR3 1.2GHz.

• GPU Implementation using SIMT (SIMD threads)
• Scalability with increasing #threads (P)



50

64K search queries against a 512MB data set with 134mill. 4-byte integer entries, 
Results for a nVidia GT200b, 1.5GHz, GDDR3 1.2GHz.

• GPU Implementation using SIMT (SIMD threads)
• Scalability with increasing #threads (P)

P-ary Search (GPU) – Scalability 



51

P-ary Search(CPU) = K-ary Search 

Searching a 512MB data set with 134mill. 4-byte integer entries,
Core i7 2.66GHz, DDR3 1666.

• K-ary1 search is the same algorithm ported to the CPU using 
SSE vectors (int4) → convergence rate log4(n)

1 B. Schlegel, R. Gemulla, W. Lehner, k-Ary Search on Modern Processors, DaMoN 2000
                



52

P-ary Search(CPU) = K-ary Search

64K search queries against a 512MB data set with 134mill. 4-byte integer entries, 
Core i7 2.66GHz, DDR3 1666.

• Throughput scales proportional to #threads

1 B. Schlegel, R. Gemulla, W. Lehner, k-Ary Search on Modern Processors, DaMoN 2000
                



53

P-ary search - an architecture perspective

• Architecture trends
– Memory latency has bottomed out more than a decade ago
– Parallel memory bandwidth keeps increasing

• e.g. Core 2 8GB/s, Core i7 24GB/s (10GB/s per core)
– Multi-core is just the beginning, many-core is the future
– Cache per core keeps decreasing (GPU, no caches)

• Linear (coalesced) memory accesses take its place
– Core/ thread synchronization costs keep decreasing

➔ Only thing to hope for are increases in parallel memory bandwidth



54

P-ary search - an architecture perspective

• Architecture trends
– Memory latency has bottomed out more than a decade ago
– Parallel memory bandwidth keeps increasing

• e.g. Core 2 8GB/s, Core i7 24GB/s (10GB/s per core)
– Multi-core is just the beginning, many-core is the future
– Cache per core keeps decreasing (GPU, no caches)

• Linear (coalesced) memory accesses take its place
– Core/ thread synchronization costs keep decreasing

➔ Only thing to hope for are increases in parallel memory bandwidth

• P-ary search was designed under this premises and provides 
– Scalable performance – fast thread synchronization
– Reduced query response time – parallel memory access
– Increased throughput – coalesced memory access
– Workload independent constant query execution time 



55

Questions


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

