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• Special Function 
Units (SFUs) 

• Use to compute 
__sinf(), __expf() 

• Only 4, each can 
execute 1 
instruction per 
clock 

Image: NVIDIA Fermi Whitepaper 

Mixed Instructions 
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Loop Unrolling 

for (int k = 0; k < BLOCK_SIZE; ++k) 

{ 

  Pvalue += Ms[ty][k] * Ns[k][tx]; 

} 

• Instructions per iteration 

– One floating-point multiply 

– One floating-point add 

– What else? 
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http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
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for (int k = 0; k < BLOCK_SIZE; ++k) 

{ 

  Pvalue += Ms[ty][k] * Ns[k][tx]; 

} 

Loop Unrolling 

• Other instructions per iteration 

– Update loop counter 
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for (int k = 0; k < BLOCK_SIZE; ++k) 

{ 

  Pvalue += Ms[ty][k] * Ns[k][tx]; 

} 

Loop Unrolling 

• Other instructions per iteration 

– Update loop counter 

– Branch 
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for (int k = 0; k < BLOCK_SIZE; ++k) 

{ 

  Pvalue += Ms[ty][k] * Ns[k][tx]; 

} 

Loop Unrolling 

• Other instructions per iteration 

– Update loop counter 

– Branch 

– Address arithmetic 
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Loop Unrolling 

• Instruction Mix 

– 2 floating-point arithmetic instructions 

– 1 loop branch instruction 

– 2 address arithmetic instructions 

– 1 loop counter increment instruction 

for (int k = 0; k < BLOCK_SIZE; ++k) 

{ 

  Pvalue += Ms[ty][k] * Ns[k][tx]; 

} 
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• Only 1/3 are 
floating-point 
calculations 

• But I want my full 
theoretical 1 
TFLOP (Fermi) 

• Consider  loop 
unrolling 

Image: NVIDIA Fermi Whitepaper 

Loop Unrolling 
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Loop Unrolling 

Pvalue +=  

  Ms[ty][0] * Ns[0][tx] + 

  Ms[ty][1] * Ns[1][tx] + 

  ... 

  Ms[ty][15] * Ns[15][tx]; // BLOCK_SIZE = 16 

 

 • No more loop 

• No loop count update 

• No branch 

• Constant indices – no address arithmetic 
instructions 
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Loop Unrolling 

• Automatically: 
#pragma unroll BLOCK_SIZE 

for (int k = 0; k < BLOCK_SIZE; ++k) 

{ 

  Pvalue += Ms[ty][k] * Ns[k][tx]; 

} 

• Under the hood: Predication 

• Disadvantages to unrolling? 
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Aside: Loop Counters 

for (i = 0; i < n; ++i) 

{ 

 out[i] = in[offset + stride*i]; 

} 

• Should i be signed or unsigned? 

12 

http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
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Loop Unrolling Performance 

Image from http://courses.engr.illinois.edu/ece498/al/textbook/Chapter5-CudaPerformance.pdf  
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Thread Granularity 

• How much work should one thread do? 

– Parallel Reduction 

• Reduce two elements? 

– Matrix multiply 
• Compute one element of Pd? 
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Slide from Vasily Volkov’s talk at SC11 15 Slide from Vasily Volkov’s talk at SC11 16 

http://www.cs.berkeley.edu/~volkov/volkov11-unrolling.pdf
http://www.cs.berkeley.edu/~volkov
http://www.cs.berkeley.edu/~volkov
http://www.cs.berkeley.edu/~volkov/volkov11-unrolling.pdf
http://www.cs.berkeley.edu/~volkov
http://www.cs.berkeley.edu/~volkov
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Slide from Vasily Volkov’s talk at SC11 17 Slide from Vasily Volkov’s talk at SC11 20 

All about Tradeoffs 

• Thread count 

• Block count 

• Register count 

• Shared memory size 

• Instruction size 
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Shared Memory 

• Fast pool of on-chip memory 

• Allocated per block 

• Note: runs at base clock instead of shader 
clock 

 

Registers 

Thread block slots 

Thread slots 

Shared memory 

SM 

8 

768 

8K registers 

16K 

   G80 Limits    

 Shared memory 
access patterns can 
affect performance.  
Why? 
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http://www.cs.berkeley.edu/~volkov/volkov11-unrolling.pdf
http://www.cs.berkeley.edu/~volkov
http://www.cs.berkeley.edu/~volkov
http://www.cs.berkeley.edu/~volkov/volkov11-unrolling.pdf
http://www.cs.berkeley.edu/~volkov
http://www.cs.berkeley.edu/~volkov
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Bank Conflicts 

Image from http://courses.engr.illinois.edu/ece498/al/Syllabus.html  

• Shared Memory 

– Sometimes called a parallel data cache 

• Multiple threads can access shared memory at 
the same time 

– Memory is divided into banks (Why?) 

 

Bank 15 

Bank 7 
Bank 6 
Bank 5 
Bank 4 
Bank 3 
Bank 2 
Bank 1 
Bank 0 
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Bank Conflicts 

Image from http://courses.engr.illinois.edu/ece498/al/Syllabus.html  

• Banks 

– Each bank can service one address per two 
cycles 

– Per-bank bandwidth: 32-bits per two 
(shader clock) cycles 

– Successive 32-bit words are assigned to 
successive banks 

 

 

Bank 15 

Bank 7 
Bank 6 
Bank 5 
Bank 4 
Bank 3 
Bank 2 
Bank 1 
Bank 0 
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Bank Conflicts 

Image from http://courses.engr.illinois.edu/ece498/al/Syllabus.html  

• Bank Conflict:  Two simultaneous accesses 
to the same bank, but not the same 
address 
– Serialized 

• G80-GT200: 16 banks, with 8 SPs 
concurrently executing 

• Fermi: 32 banks, with 16 SPs concurrently 
executing  
– What does this mean for conflicts? 

 

 

Bank 15 

Bank 7 
Bank 6 
Bank 5 
Bank 4 
Bank 3 
Bank 2 
Bank 1 
Bank 0 
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Bank Conflicts 

Image from http://courses.engr.illinois.edu/ece498/al/Syllabus.html  

 Bank Conflicts? 
 Linear addressing  

stride == 1 

 Bank Conflicts? 
 Random 1:1 Permutation 

Bank 15 
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Bank 3 
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Bank 1 
Bank 0 

Thread 15 

Thread 7 
Thread 6 
Thread 5 
Thread 4 
Thread 3 
Thread 2 
Thread 1 
Thread 0 

Bank 15 
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Thread 15 

Thread 7 
Thread 6 
Thread 5 
Thread 4 
Thread 3 
Thread 2 
Thread 1 
Thread 0 

26 



2/8/2012 

7 

Bank Conflicts 

Image from http://courses.engr.illinois.edu/ece498/al/Syllabus.html  

 Bank Conflicts? 
 Linear addressing  

stride == 2 

 Bank Conflicts? 
 Linear addressing  

stride == 8 

Thread 11 
Thread 10 
Thread 9 
Thread 8 

Thread 4 
Thread 3 
Thread 2 
Thread 1 
Thread 0 

Bank 15 

Bank 7 
Bank 6 
Bank 5 
Bank 4 
Bank 3 
Bank 2 
Bank 1 
Bank 0 

Thread 15 

Thread 7 
Thread 6 
Thread 5 
Thread 4 
Thread 3 
Thread 2 
Thread 1 
Thread 0 

Bank 9 
Bank 8 

Bank 15 

Bank 7 

Bank 2 
Bank 1 
Bank 0 

x8 

x8 
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Bank Conflicts 

Image from http://courses.engr.illinois.edu/ece498/al/Syllabus.html  

• Fast Path 1 (G80) 

– All threads in a half-warp 
access different banks 
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Bank Conflicts 

Image from http://courses.engr.illinois.edu/ece498/al/Syllabus.html  

• Fast Path 2 (G80) 

– All threads in a half-warp 
access the same address 

 

 

Bank 15 

Bank 7 
Bank 6 
Bank 5 
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Bank 3 
Bank 2 
Bank 1 
Bank 0 

Thread 15 

Thread 7 
Thread 6 
Thread 5 
Thread 4 
Thread 3 
Thread 2 
Thread 1 
Thread 0 

Same 

address 
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Bank Conflicts 

Image from http://courses.engr.illinois.edu/ece498/al/Syllabus.html  

• Slow Path (G80) 
– Multiple threads in a half-

warp access the same bank 
– Access is serialized 
– What is the cost? 
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Thread 10 
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Bank Conflicts 

__shared__ float shared[256]; 

// ... 

float f = shared[index + s * threadIdx.x]; 

 

• For what values of s is this conflict free? 

– Hint:  The G80 has 16 banks 
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Bank Conflicts 

__shared__ float shared[256]; 

// ... 

float f = shared[index + s * threadIdx.x]; 
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Image from http://courses.engr.illinois.edu/ece498/al/Syllabus.html  
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Bank Conflicts 

• Without using a profiler, how can we tell what kind of 
speedup we can expect by removing bank conflicts? 

• What happens if more than one thread in a warp writes 
to the same shared memory address (non-atomic 
instruction)? 

33 

Partition Camping 

• “Bank conflicts” of global 
memory 

• Global memory divided 
into 6 (G80) or 8 (GT200) 
256-byte partitions 

• The 1 million KBps 
question: How do active 
half-warps in your kernel 
access memory? 

Image: [Reutsch & Micikevicius, 2010] 34 
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Fixing Partition Camping 

• Diagonalize block indices 
blockIdx_y=blockIdx.x; 

blockIdx_x= 

(blockIdx.x+blockIdx.y)

%gridDim.x; 

• Output: 

 

 

 

 

 
 

• Not a problem in Fermi (How?) 

 
Image: [Reutsch & Micikevicius, 2010] 35 

Page-Locked Host Memory 

• Page-locked Memory 

– Host memory that is essentially removed from 
virtual memory 

– Also called Pinned Memory 

36 

Page-Locked Host Memory 

• Benefits 
– Overlap kernel execution and data transfers 

 

See G.1 in the NVIDIA CUDA C Programming Guide for full compute capability requirements 

Time 

Data Transfer Kernel Execution 

Data Transfer 

Kernel Execution 

Normally: 

Paged-locked: 
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Page-Locked Host Memory 

• Benefits 

– Increased memory bandwidth for systems with a 
front-side bus 

• Up to ~2x throughput 

 

 

Image from http://arstechnica.com/hardware/news/2009/10/day-of-nvidia-chipset-reckoning-arrives.ars  
38 
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Page-Locked Host Memory 

• Benefits 

– Option: Write-Combining Memory 

• Disables page-locked memory’s default caching 

• Allocate with cudaHostAllocWriteCombined to  

– Avoid polluting L1 and L2 caches 

– Avoid snooping transfers across PCIe 

» Improve transfer performance up to 40% - in theory 

• Reading from write-combining memory is slow! 
– Only write to it from the host 
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Page-Locked Host Memory 

• Benefits 

– Paged-locked host memory can be mapped into 
the address space of the device on some systems 

• What systems allow this? 

• What does this eliminate? 

• What applications does this enable? 

– Call cudaGetDeviceProperties() and 
check canMapHostMemory 
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Page-Locked Host Memory 

 Usage: 

cudaHostAlloc() / cudaMallocHost() 

cudaHostFree() 

 

cudaMemcpyAsync() 

 

 

See 3.2.5 in the NVIDIA CUDA C Programming Guide 
41 

Page-Locked Host Memory 

• What’s the catch? 

– Page-locked memory is scarce 

•  Allocations will start failing before allocation of in 
pageable memory 

– Reduces amount of physical memory available to 
the OS for paging 

• Allocating too much will hurt overall system 
performance 
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Streams 

• Stream:  Sequence of commands that execute in order 
• Streams may execute their commands out-of-order or concurrently 

with respect to other streams 

Command 0 

Command 1 

Command 2 

Command 0 

Command 1 

Command 2 

Stream A Stream B 
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Streams 

Command 0 

Command 1 

Command 2 

Command 0 

Command 1 

Command 2 

Stream A Stream B Time 

Command 0 

Command 1 

Command 2 

Command 0 

Command 1 

Command 2 

 Is this a possible order? 
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Streams 

Command 0 

Command 1 

Command 2 

Command 0 

Command 1 

Command 2 

Stream A Stream B Time 

Command 0 

Command 1 

Command 2 

Command 0 

Command 1 

Command 2 

 Is this a possible order? 
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Streams 

Command 0 

Command 1 

Command 2 

Command 0 

Command 1 

Command 2 

Stream A Stream B Time 

Command 0 

Command 1 

Command 2 

Command 0 

Command 1 

Command 2 

 Is this a possible order? 
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Streams 

Command 0 

Command 1 

Command 2 

Command 0 

Command 1 

Command 2 

Stream A Stream B Time 

Command 0 

Command 2 

Command 1 

Command 0 

Command 2 

Command 1 

 Is this a possible order? 
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Streams 

Command 0 

Command 1 

Command 2 

Command 0 

Command 1 

Command 2 

Stream A Stream B Time 

Command 0 

Command 1 

Command 2 

Command 0 

Command 1 

Command 2 

 Is this a possible order? 
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Streams 

• In CUDA, what commands go in a stream? 

– Kernel launches 

– Host       device memory transfers 

49 

Streams 

• Code Example 

1. Create two streams 

2. Each stream: 

1. Copy page-locked memory to device 

2. Launch kernel 

3. Copy memory back to host 

3. Destroy streams 
 

50 
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Stream Example (Step 1 of 3) 

cudaStream_t stream[2]; 

for (int i = 0; i < 2; ++i) 

{ 

    cudaStreamCreate(&stream[i]); 

} 

 

float *hostPtr; 

cudaMallocHost(&hostPtr, 2 * size); 
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cudaStream_t stream[2]; 

for (int i = 0; i < 2; ++i) 

{ 

    cudaStreamCreate(&stream[i]); 

} 

 

float *hostPtr; 

cudaMallocHost(&hostPtr, 2 * size); 

Create two streams 

Stream Example (Step 1 of 3) 
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cudaStream_t stream[2]; 

for (int i = 0; i < 2; ++i) 

{ 

    cudaStreamCreate(&stream[i]); 

} 

 

float *hostPtr; 

cudaMallocHost(&hostPtr, 2 * size); 

Allocate two buffers in page-locked memory 

Stream Example (Step 1 of 3) 

53 

for (int i = 0; i < 2; ++i) 

{ 

  cudaMemcpyAsync(/* ... */,  

    cudaMemcpyHostToDevice, stream[i]); 

  kernel<<<100, 512, 0, stream[i]>>> 

    (/* ... */); 

  cudaMemcpyAsync(/* ... */,  

    cudaMemcpyDeviceToHost, stream[i]); 

} 

 

Stream Example (Step 2 of 3) 

54 
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Stream Example (Step 2 of 3) 

for (int i = 0; i < 2; ++i) 

{ 

  cudaMemcpyAsync(/* ... */,  

    cudaMemcpyHostToDevice, stream[i]); 

  kernel<<<100, 512, 0, stream[i]>>> 

    (/* ... */); 

  cudaMemcpyAsync(/* ... */,  

    cudaMemcpyDeviceToHost, stream[i]); 

} 

  
Commands are assigned to, and executed by streams 55 

Stream Example (Step 3 of 3) 

for (int i = 0; i < 2; ++i) 

{ 

  // Blocks until commands complete 

  cudaStreamDestroy(stream[i]); 

} 

56 

Streams 

• Assume compute capabilities: 

– Overlap of data transfer and kernel execution 

– Concurrent kernel execution 

– Concurrent data transfer 

• How can the streams overlap? 

See F.1 in the NVIDIA CUDA C Programming Guide for more on compute capabilities 
57 

Streams 

Time 

Kernel execution 

Stream A Stream B 

Host     device memory 

Device     to host memory Kernel execution 

Host     device memory 

Device     to host memory 

• Can we have more overlap than this? 

58 
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Streams 

Time 

Kernel execution 

 

 

 

Stream A Stream B 

Host     device memory 

Device     to host memory 

Kernel execution 

 

 

 

Host     device memory 

Device     to host memory 

• Can we have this? 
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Streams 

Time 

Kernel execution 

 

 

 

Stream A 

Stream B 

Host     device memory 

Device     to host memory Kernel execution 

 

 

 

Host     device memory 

Device     to host memory 

• Can we have this? 

Dependent 

on kernel 

completion 

Blocked until kernel from 

Stream A completes 
60 

Streams 

• Performance Advice 

– Issue all independent commands before 
dependent ones 

– Delay synchronization (implicit or explicit) as long 
as possible 
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• Rewrite this to allow concurrent kernel 
execution 

 

Streams 

for (int i = 0; i < 2; ++i) 

{ 

  cudaMemcpyAsync(/* ... */, stream[i]); 

  kernel<<< /*... */ stream[i]>>>(); 

  cudaMemcpyAsync(/* ... */, stream[i]); 

} 
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Streams 

for (int i = 0; i < 2; ++i) // to device 

 cudaMemcpyAsync(/* ... */, stream[i]); 

 

for (int i = 0; i < 2; ++i) 

  kernel<<< /*... */ stream[i]>>>(); 

 

for (int i = 0; i < 2; ++i)  // to host 

  cudaMemcpyAsync(/* ... */, stream[i]); 
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Streams 

• Explicit Synchronization 
– cudaThreadSynchronize() 

• Blocks until commands in all streams finish 

– cudaStreamSynchronize() 

• Blocks until commands in a stream finish 

 

See 3.2.5.5.3  in the NVIDIA CUDA C Programming Guide for more synchronization functions 
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