&

CUDA Performance Considerations
(2 of 2)

Varun Sampath
Original Slides by Patrick Cozzi
University of Pennsylvania
CIS 565 - Spring 2012

Agenda

* Instruction Optimizations
— Mixed Instruction Types
— Loop Unrolling
— Thread Granularity
* Memory Optimizations
— Shared Memory Bank Conflicts
— Partition Camping
— Pinned Memory
* Streams

Mixed Instructions

Special Function
Units (SFUs)

Use to compute
__sinf(), _ expf()

CUDACore |

Only 4, each can ﬁa
execute 1
instruction per

clock

[R

Image: NVIDIA Fermi Whitepaper Fermi Streaming Multiprocessor (SM)

Loop Unrolling

for (int k = 0; k < BLOCK SIZE; ++k)

{
Pvalue += Ms[ty][k] * Ns[k][tx];

}

* Instructions per iteration
— One floating-point multiply
— One floating-point add
— What else?

2/8/2012

http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf

Loop Unrolling

for (int k = 0; k < BLOCK_SIZE;@
{

Pvalue += Ms[ty][k] * Ns[k][tx];
}

* Other instructions per iteration
— Update loop counter

Loop Unrolling

for (int k = ;; ++k)
{

Pvalue += Ms[ty][k] * Ns[k][tx];
}

* Other instructions per iteration
— Update loop counter
— Branch

Loop Unrolling

for (int k =
{

}

; k < BLOCK SIZE; ++k)

* Other instructions per iteration
— Update loop counter
— Branch

— Address arithmetic

Loop Unrolling

for (int k =

; k < BLOCK SIZE; ++k)
{

Pvalue += Ms[ty][k] * Ns[k][tx];
}

* Instruction Mix
— 2 floating-point arithmetic instructions
— 1 loop branch instruction
— 2 address arithmetic instructions

— 1 loop counter increment instruction

2/8/2012

Loop Unrolling

Only 1/3 are
floating-point
calculations \

But | want my full = =250
theoretical 1
TFLOP (Fermi)

Consider loop
unrolling

Image: NVIDIA Fermi Whitepaper

T —
[wscoms | [wwwswiw |
[e | [oepiw

S R E R

|

Fermi Streaming Multiprocessor (SM)

Loop Unrolling

Pvalue +=
Ms[ty]l [0] * Ns[O][tx] +
Ms[ty]l[1l] * Ns[1l][tx] +

Méity][lS] * Ns[15][tx]; // BLOCK SIZE = 16

+ No more loop
+ No loop count update
+ No branch

« Constant indices — no address arithmetic
instructions

Loop Unrolling

Automatically:

#pragma unroll BLOCK SIZE
for (int k = 0; k < BLOCK SIZE; ++k)

{

Pvalue += Ms[ty][k] * Ns[k][tx];

Under the hood: Predication

Disadvantages to unrolling?

Aside: Loop Counters

for (1 = 0; 1 < n; ++1i)

{

out[i] = in[offset + stride*i];
}

* Should i be signed or unsigned?

2/8/2012

http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf

GFLOPS

Loop Unrolling Performance

140
120
=]
100 unroll 1
50 ~ | munroll 2
60 4 Ounroll 4
40 = Ocomplete
unroll
“ -WII i
o
® = = =] = " = ® <= K] <
el 2 E| B E| B £E| £ E|l & E| B
s | & s | & s | & s | & g | & s | &
2 @ 2 1] c T c ° c © 2 1]
2 2 2 L I <
a a =% a a a
1x1 1x2 1x4 1x1 1x2 1x4
8x8 tiles 16x16 tiles

Optimizations

Image from http://courses.engr.illinois.edu/ece498/al/textbook/Chapter5-CudaPerformance.pdf

Thread Granularity

* How much work should one thread do?
— Parallel Reduction
* Reduce two elements?
— Matrix multiply

* Compute one element of Pd?

Unroll the parallel loop

Use half as many threads

* But twice as much work per thread
* This amounts to replicating lines of code

lide from Vasily Volkov’s talk at SC11 15

Unrolling 2x (red is new)

_ global__ void eliminate(float *in, float *out) {
int x = threadIdx.x, y = threadIdx.y, problem = blockIdx.x;
//copy matrix to shared memory
A[2*y+0][x] = in[32*32*problem+32*(2*y+0)+x];
A[2%y+1][x] = in[32*32*%problem+32*(2%y+1)+x];
//Gauss-Jordan in shared memory
#pragma unroll

for(int 1 = @; 1 < 32; i++)

{
iF(y == 1/2) A[i][x] /= A[L][4);
_ syncthreads();
if(2*y+0 != i) A[2*y+@][x] -= A[i][x]*A[2*y+@][1i];
if(2%y+l 1= i) A[2%y+1][x] -= A[i][x]*A[2*y+1][i];
}

//store the result in global memory
out[32*32%problem+32* (2*y+@)+x] = A[2*y+8][x];
out[32*32%problem+32* (2*y+1)+x] = A[2*y+1][x];

lide from Vasily Volkov’s talk at SC11

2/8/2012

http://www.cs.berkeley.edu/~volkov/volkov11-unrolling.pdf
http://www.cs.berkeley.edu/~volkov
http://www.cs.berkeley.edu/~volkov
http://www.cs.berkeley.edu/~volkov/volkov11-unrolling.pdf
http://www.cs.berkeley.edu/~volkov
http://www.cs.berkeley.edu/~volkov

Aggregate speedup: 2.6x

2 4
matrix entries per threen:l8
Let’s use profiler to figure out what happened

Slide from Vasily Volkov’s talk at SC11

16

Instructions executed per thread block

0 2000 4000 8000 10000 12000
'g 1 | smem access |flops other
Q
.
£ =
=
Q
2" | | |
w
)

]
e | |
2
1o | ||

Dramatically fewer auxiliary instructions (control, barriers, etc.)
« Similar effect as with classical loop unrolling
Most instructions are shared memory access?!

Slide from Vasily Volkov’s talk at SC11

All about Tradeoffs

Thread count

Block count
Register count
Shared memory size
* |nstruction size

Shared Memory

* Fast pool of on-chip memory

* Allocated per block

* Note: runs at base clock instead of shader

clock

Shared memory
access patterns can

affect performance.

Why?

G80 Limits
Thread block slots 8
Thread slots 768

SM

8K registers

16K

2/8/2012

http://www.cs.berkeley.edu/~volkov/volkov11-unrolling.pdf
http://www.cs.berkeley.edu/~volkov
http://www.cs.berkeley.edu/~volkov
http://www.cs.berkeley.edu/~volkov/volkov11-unrolling.pdf
http://www.cs.berkeley.edu/~volkov
http://www.cs.berkeley.edu/~volkov

Bank Conflicts

* Shared Memory

— Sometimes called a parallel data cache

* Multiple threads can access shared memory at
the same time

— Memory is divided into banks (Why?)

23
Image from http:/courses.engr.illinois.edu/ece498/al/Syllabus.html

Bank Conflicts

* Banks
— Each bank can service one address per two
cycles

— Per-bank bandwidth: 32-bits per two
(shader clock) cycles

— Successive 32-bit words are assigned to
successive banks

24
Image from http:/courses.engr.illinois.edu/ece498/al/Syllabus.html

Bank Conflicts

* Bank Conflict: Two simultaneous accesses
to the same bank, but not the same
address

— Serialized

* G80-GT200: 16 banks, with 8 SPs
concurrently executing

* Fermi: 32 banks, with 16 SPs concurrently
executing

— What does this mean for conflicts? -
Bank 15

25
Image from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

Bank Conflicts

Bank Conflicts?
00 Random 1:1 Permutation

Bank Conflicts?

[0 Linear addressing
stride ==

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7

Thread 15 Bank 15 Thread 15 Bank 15

26
Image from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

2/8/2012

Bank Conflicts

Bank Conflicts?

O Linear addressing
stride ==

Bank Conflicts?

O Linear addressing
stride ==

Thread 0
Thread 1
Thread 2
Thread 3

Thread 4 "
Thread 5 ,\
Thread 6 >

Thread 7

Thread 0
Thread 1

Thread 2 ~
Thread 3 ‘

Thread 4

Thread 8 X8
Thread 9
Thread 10

Thread 11 Bank 15 Thread 15 Bank 15

27
Image from http:/courses.engr.illinois.edu/ece498/al/Syllabus.html

Bank Conflicts

* Fast Path 1 (G80)

— All threads in a half-warp

access different banks Thread 0
Thread 1
Thread 2
Thread 3
Thread 4

Thread 5
Thread 6
Thread 7

Thread 15 Bank 15

28
Image from http:/courses.engr.illinois.edu/ece498/al/Syllabus.html

Bank Conflicts

* Fast Path 2 (G80)

— All threads in a half-warp

access the same address E—
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7

Thread 15 Bank 15

29
Image from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

Same
address

7

\

Bank Conflicts

* Slow Path (G80)
— Multiple threads in a half-

warp access the same bank
— Access is serialized Thread 0

— What is the cost? Ulitiges 4
Thread 2

Thread 3

Thread 4

Thread 8
Thread 9

Thread 10
Thread 11 Bank 15

30
Image from http://courses.engr.illinois.edu/ec: Syllabus.html

2/8/2012

Bank Conflicts

__shared float shared[1;
//
float f = shared[index + s * threadIdx.x];
* For what values of s is this conflict free?
— Hint: The G80 has 16 banks

Bank Conflicts

~_shared float shared[17
//
float f = shared[index + s * threadIdx.x];

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4.
Thread 5

Thread6 | NEeN

Thread 7

Thread 0

Threod1 R,
s,
Thread 3 = Bank 3
Thread 4 Bank 4.
Theaas
T

Thread 7

. .
. . g
Thread 15 Bank 15 Thread 15

Image from http:/courses.engr.illinois.edu/ece498/al/Syllabus.html

Bank Conflicts

* Without using a profiler, how can we tell what kind of
speedup we can expect by removing bank conflicts?

* What happens if more than one thread in a warp writes

to the same shared memory address (non-atomic
instruction)?

Partition Camping

* “Bank conflicts” of global

memory
0 64 128
* Global memory divided T [es | 120
into 6 (G80) or 8 (GT200) 2 | e [130
256-byte partitions 3 | er
* The 1 million KBps : z:

question: How do active
half-warps in your kernel
access memory?

Image: [Reutsch & Micikevicius, 2010] 3,

2/8/2012

Fixing Partition Camping

* Diagonalize block indices Sartesian Diagonal
blockIdx y=blockIdx.x; 55T 0 201301 [eo 107 Joz 02
blockIdx x= IR EXEX f BRI A EED
(blockIdx.x+blockIdx.y) [02]12]22|s2|[22[23]z0]21
$gridDim.x; 0313 |23]a3] [a1]s2]33]30
¢ OQOutput: i

0 blockldx.x + gridDim.x"blockldx.y ‘

I I

128 | 65 | 2 EEEERE 0] 4] 8|12
129 [66 3 4|5 |6 |7 B3] 1]5]9
130 | 67 | 4 8|9 [10]n w|14|2]s

e | 5 1213] 14 [15 IR EERE

. i i ?
NOt a prObIem n Ferml (HOW') Image: [Reutsch & Micikevicius, 2010] 35

Page-Locked Host Memory

* Page-locked Memory

— Host memory that is essentially removed from
virtual memory

— Also called Pinned Memory

Page-Locked Host Memory

* Benefits
— Overlap kernel execution and data transfers

Time

Normally: ‘ Data Transfer ‘ Kernel Execution

Paged-locked: Data Transfer
Kernel Execution

37
See G.1 in the NVIDIA CUDA C Programming Guide for full compute capability requirements

Page-Locked Host Memory

¢ Benefits

— Increased memory bandwidth for systems with a
front-side bus
* Up to ~2x throughput

Image from http://arstechnica.com/hardware/news/2009/10/day-0f-nvidia-chipset—reckoning-arrf\;és,ars

Page-Locked Host Memory

* Benefits
— Option: Write-Combining Memory
* Disables page-locked memory’s default caching
* Allocate with cudaHostAllocWriteCombined to
— Avoid polluting L1 and L2 caches

— Avoid snooping transfers across PCle
» Improve transfer performance up to 40% - in theory

* Reading from write-combining memory is !
— Only write to it from the host

Page-Locked Host Memory

¢ Benefits

— Paged-locked memory can be mapped into
the address space of the on some systems
* What systems allow this?
* What does this eliminate?
* What applications does this enable?
— Call cudaGetDeviceProperties () and
check canMapHostMemory

Page-Locked Host Memory

Usage:

cudaHostAlloc () / cudaMallocHost ()

cudaHostFree ()

cudaMemcpyAsync ()

41
See 3.2.5 in the NVIDIA CUDA C Programming Guide

Page-Locked Host Memory

* What’s the catch?
— Page-locked memory is scarce

* Allocations will start failing before allocation of in
pageable memory
— Reduces amount of physical memory available to
the OS for paging
* Allocating too much will hurt overall system
performance

2/8/2012

10

Streams

e Stream: Sequence of commands that execute in order

* Streams may execute their commands out-of-order or concurrently
with respect to other streams

Stream A Stream B

‘ Command 0 ‘ ‘ Command O ‘

‘ Command 1 ‘ ‘ Command 1 ‘

‘ Command 2 ‘ ‘ Command 2 ‘

Streams

Is this a possible order?
Time

Command 0

Command 1

Command 2

Command 0

Command 1

Command 2

Stream A Stream B
‘ Command 0 ‘ ‘ Command 0 ‘
‘ Command 1 ‘ ‘ Command 1 ‘
‘ Command 2 ‘ ‘ Command 2 ‘ s
Streams

Is this a possible order?

Stream A Stream B Time

‘ Command 0 ‘ ‘ Command 0 ‘ Command O

‘ Command 1 ‘ ‘ Command 1 ‘ Command 1

‘ Command 2 ‘ ‘ Command 2 ‘ Command 2

Command 0
Command 1

Command 2

Stream A Stream B

‘ Command 0 ‘ ‘ Command 0 ‘

‘ Command 1 ‘ ‘ Command 1 ‘

‘ Command 2 ‘ ‘ Command 2 ‘

Streams

Is this a possible order?
Time

Command 0

Command 0

Command 1

Command 1

Command 2

Command 2

2/8/2012

11

Streams

Is this a possible order?

Stream A Stream B Time

‘ Command 0 ‘ ‘ Command 0 ‘ Command 0

‘ Command 1 ‘ ‘ Command 1 ‘ Command 0

‘ Command 2 ‘ ‘ Command 2 ‘ Command 2

Command 2

Command 1

Command 1

Streams

Is this a possible order?

Stream A Stream B Time

‘ Command 0 ‘ ‘ Command O ‘ ‘ Command 0 ‘ ‘ Command O ‘

‘ Command 1 ‘ ‘ Command 1 ‘ ‘ Command 1 ‘ ‘ Command 1 ‘

‘ Command 2 ‘ ‘ Command 2 ‘ ‘ Command 2 ‘ ‘ Command 2 ‘

Streams

* In CUDA, what commands go in a stream?
— Kernel launches
— Host¢mpdevice memory transfers

Streams

* Code Example
1. Create two streams
2. Each stream:
1. Copy page-locked memory to device
2. Launch kernel
3. Copy memory back to host

3. Destroy streams

2/8/2012

12

Stream Example (Step 1 of 3)

cudaStream t stream[2];
for (int 1 = 0; 1 < 2; ++1i)
{

cudaStreamCreate (&stream[i]);

float *hostPtr;
cudaMallocHost (&hostPtr, 2 * size);

Stream Example (Step 1 of 3)

cudaStream t stream[2];
for (int 1 = 0; i < 2; ++1i)

{

cudaStreamCreate (&stream[i]) ;

Create two streams

float *hostPtr;
cudaMallocHost (&hostPtr, 2 * size);

Stream Example (Step 1 of 3)

cudaStream t stream[2];
for (int 1 = 0; 1 < 2; ++1i)
{

cudaStreamCreate (&stream[i]) ;

float *hostPtr;
kudaMallocHost(&hostPtr, 2 * size);

‘ Allocate two buffers in page-locked memory ‘

Stream Example (Step 2 of 3)

for (int 1 = 0; i < 2; ++1)
{
cudaMemcpyAsync (/* ... */,

cudaMemcpyHostToDevice, stream[i]);

kernel<<<100, 512, 0, stream[i]>>>
(/* ... %))
cudaMemcpyAsync (/* ... */,

cudaMemcpyDeviceToHost, stream[i]);

2/8/2012

13

Stream Example (Step 2 of 3)

for (int 1 = 0; 1 < 2; ++1)
{
cudaMemcpyAsync (/* ... */,
cudaMemcpyHostToDevice, |stream[il]]);
kernel<<<100, 512, 0, |stream[i]p>>
(/* ... */);
cudaMemcpyAsync (/* ... */,

cudaMemcpyDeviceToHost, |stream[i]]);

‘ Commands are assigned to, and executed by streams ‘ .

Stream Example (Step 3 of 3)

for (int 1 = 0; 1 < 2; ++1i)
{
// Blocks until commands complete

cudaStreamDestroy (stream[i]) ;

Streams

* Assume compute capabilities:
— Overlap of data transfer and kernel execution
— Concurrent kernel execution
— Concurrent data transfer

* How can the streams overlap?

See F.1 in the NVIDIA CUDA C Programming Guide for more on compute capa‘dilities

Streams

* Can we have more overlap than this?
Time

Stream A Stream B

[Host ® device memory]

[Kernel execution] ‘ Host ® device memory ‘

l Device®) to host memory] ‘ Kernel execution ‘

‘ Device® to host memory ‘

2/8/2012

14

2/8/2012

Streams Streams
* Can we have this? * Can we have this?
Time Stream A Time
‘ Host = device memory ‘
Stream A Stream B " Stream B
Kernel execution
‘ Host B device memory ‘
Kernel execution ‘ Host ® device memory Dependent N A\Host = device memory
- on kernel 1) 4‘< .
Kernel execution completion Devices to host memory ‘ ernel execution
‘ Device® to host memory ‘ Blocked until kernel from
N A | N
‘ Devicem to host memory 59 Stream A completes ‘ Devicem to host memory

Streams Streams

* Performance Advice ¢ Rewrite this to allow concurrent kernel

— Issue all independent commands before execution
dependent ones

— Delay synchronization (implicit or explicit) as long

. for (int 1 = 0; i < 2; ++1)
as possible
{
cudaMemcpyAsync (/* ... */, stream[i]);
kernel<<< /*... */ stream[1]>>>();
cudaMemcpyAsync (/* ... */, stream[i]);
}

15

Streams

for (int i = 0; i < 2; ++i) // to device

cudaMemcpyAsync (/* ... */, stream[i]);

for (int 1 = 0; i < 2; ++1)
kernel<<< /*,.. */ stream[i]>>>();

for (int i = 0; i < 2; ++i) // to host

cudaMemcpyAsync (/* ... */, stream[i]);

Streams

* Explicit Synchronization
—cudaThreadSynchronize ()
* Blocks until commands in all streams finish
—cudaStreamSynchronize ()

* Blocks until commands in a stream finish

See 3.2.5.5.3 in the NVIDIA CUDA C Programming Guide for more synchronization functions

References

* CUDA C Best Practices Guide, version 4.1
* CUDA C Programming Guide, version 4.1

* Reutsch, Greg and Micikevicius, Paulius.
“Optimizing Matrix Transpose in CUDA.” June
2010.

* Volkov, Vasily. “Unrolling parallel loops.”
November 14, 2011. Slides

Bibliography

* Optimal Parallel Reduction Proof with Brent’s
Theorem

* Vasily Volkov. “Better Performance at Lower
Occupancy.” Slides

* Mark Harris. “Optimizing Parallel Reduction in
CUDA.” Slides

2/8/2012

16

http://www.cs.berkeley.edu/~volkov/volkov11-unrolling.pdf
http://www.eli.sdsu.edu/courses/spring96/cs662/notes/speedup/speedup.html
http://www.cs.berkeley.edu/~volkov/volkov10-GTC.pdf
http://www.seas.upenn.edu/~cis565/LECTURES/61609-2.pdf

