
2/8/2012

1

CUDA Performance Considerations
(2 of 2)

Varun Sampath
Original Slides by Patrick Cozzi

University of Pennsylvania
CIS 565 - Spring 2012

Agenda

• Instruction Optimizations
– Mixed Instruction Types

– Loop Unrolling

– Thread Granularity

• Memory Optimizations
– Shared Memory Bank Conflicts

– Partition Camping

– Pinned Memory

• Streams

2

• Special Function
Units (SFUs)

• Use to compute
__sinf(), __expf()

• Only 4, each can
execute 1
instruction per
clock

Image: NVIDIA Fermi Whitepaper

Mixed Instructions

3

Loop Unrolling

for (int k = 0; k < BLOCK_SIZE; ++k)

{

 Pvalue += Ms[ty][k] * Ns[k][tx];

}

• Instructions per iteration

– One floating-point multiply

– One floating-point add

– What else?

4

http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf

2/8/2012

2

for (int k = 0; k < BLOCK_SIZE; ++k)

{

 Pvalue += Ms[ty][k] * Ns[k][tx];

}

Loop Unrolling

• Other instructions per iteration

– Update loop counter

5

for (int k = 0; k < BLOCK_SIZE; ++k)

{

 Pvalue += Ms[ty][k] * Ns[k][tx];

}

Loop Unrolling

• Other instructions per iteration

– Update loop counter

– Branch

6

for (int k = 0; k < BLOCK_SIZE; ++k)

{

 Pvalue += Ms[ty][k] * Ns[k][tx];

}

Loop Unrolling

• Other instructions per iteration

– Update loop counter

– Branch

– Address arithmetic

7

Loop Unrolling

• Instruction Mix

– 2 floating-point arithmetic instructions

– 1 loop branch instruction

– 2 address arithmetic instructions

– 1 loop counter increment instruction

for (int k = 0; k < BLOCK_SIZE; ++k)

{

 Pvalue += Ms[ty][k] * Ns[k][tx];

}

8

2/8/2012

3

• Only 1/3 are
floating-point
calculations

• But I want my full
theoretical 1
TFLOP (Fermi)

• Consider loop
unrolling

Image: NVIDIA Fermi Whitepaper

Loop Unrolling

9

Loop Unrolling

Pvalue +=

 Ms[ty][0] * Ns[0][tx] +

 Ms[ty][1] * Ns[1][tx] +

 ...

 Ms[ty][15] * Ns[15][tx]; // BLOCK_SIZE = 16

 • No more loop

• No loop count update

• No branch

• Constant indices – no address arithmetic
instructions

10

Loop Unrolling

• Automatically:
#pragma unroll BLOCK_SIZE

for (int k = 0; k < BLOCK_SIZE; ++k)

{

 Pvalue += Ms[ty][k] * Ns[k][tx];

}

• Under the hood: Predication

• Disadvantages to unrolling?

11

Aside: Loop Counters

for (i = 0; i < n; ++i)

{

 out[i] = in[offset + stride*i];

}

• Should i be signed or unsigned?

12

http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf

2/8/2012

4

Loop Unrolling Performance

Image from http://courses.engr.illinois.edu/ece498/al/textbook/Chapter5-CudaPerformance.pdf
13

Thread Granularity

• How much work should one thread do?

– Parallel Reduction

• Reduce two elements?

– Matrix multiply
• Compute one element of Pd?

14

Slide from Vasily Volkov’s talk at SC11 15 Slide from Vasily Volkov’s talk at SC11 16

http://www.cs.berkeley.edu/~volkov/volkov11-unrolling.pdf
http://www.cs.berkeley.edu/~volkov
http://www.cs.berkeley.edu/~volkov
http://www.cs.berkeley.edu/~volkov/volkov11-unrolling.pdf
http://www.cs.berkeley.edu/~volkov
http://www.cs.berkeley.edu/~volkov

2/8/2012

5

Slide from Vasily Volkov’s talk at SC11 17 Slide from Vasily Volkov’s talk at SC11 20

All about Tradeoffs

• Thread count

• Block count

• Register count

• Shared memory size

• Instruction size

21

Shared Memory

• Fast pool of on-chip memory

• Allocated per block

• Note: runs at base clock instead of shader
clock

Registers

Thread block slots

Thread slots

Shared memory

SM

8

768

8K registers

16K

 G80 Limits

 Shared memory
access patterns can
affect performance.
Why?

22

http://www.cs.berkeley.edu/~volkov/volkov11-unrolling.pdf
http://www.cs.berkeley.edu/~volkov
http://www.cs.berkeley.edu/~volkov
http://www.cs.berkeley.edu/~volkov/volkov11-unrolling.pdf
http://www.cs.berkeley.edu/~volkov
http://www.cs.berkeley.edu/~volkov

2/8/2012

6

Bank Conflicts

Image from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

• Shared Memory

– Sometimes called a parallel data cache

• Multiple threads can access shared memory at
the same time

– Memory is divided into banks (Why?)

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

23

Bank Conflicts

Image from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

• Banks

– Each bank can service one address per two
cycles

– Per-bank bandwidth: 32-bits per two
(shader clock) cycles

– Successive 32-bit words are assigned to
successive banks

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

24

Bank Conflicts

Image from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

• Bank Conflict: Two simultaneous accesses
to the same bank, but not the same
address
– Serialized

• G80-GT200: 16 banks, with 8 SPs
concurrently executing

• Fermi: 32 banks, with 16 SPs concurrently
executing
– What does this mean for conflicts?

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

25

Bank Conflicts

Image from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

 Bank Conflicts?
 Linear addressing

stride == 1

 Bank Conflicts?
 Random 1:1 Permutation

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

26

2/8/2012

7

Bank Conflicts

Image from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

 Bank Conflicts?
 Linear addressing

stride == 2

 Bank Conflicts?
 Linear addressing

stride == 8

Thread 11
Thread 10
Thread 9
Thread 8

Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 9
Bank 8

Bank 15

Bank 7

Bank 2
Bank 1
Bank 0

x8

x8

27

Bank Conflicts

Image from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

• Fast Path 1 (G80)

– All threads in a half-warp
access different banks

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

28

Bank Conflicts

Image from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

• Fast Path 2 (G80)

– All threads in a half-warp
access the same address

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Same

address

29

Bank Conflicts

Image from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

• Slow Path (G80)
– Multiple threads in a half-

warp access the same bank
– Access is serialized
– What is the cost?

Thread 11
Thread 10
Thread 9
Thread 8

Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

30

2/8/2012

8

Bank Conflicts

__shared__ float shared[256];

// ...

float f = shared[index + s * threadIdx.x];

• For what values of s is this conflict free?

– Hint: The G80 has 16 banks

31

Bank Conflicts

__shared__ float shared[256];

// ...

float f = shared[index + s * threadIdx.x];

Bank 15

Bank 7

Bank 6

Bank 5

Bank 4

Bank 3

Bank 2

Bank 1

Bank 0

Thread 15

Thread 7

Thread 6

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

s=1

Bank 15

Bank 7

Bank 6

Bank 5

Bank 4

Bank 3

Bank 2

Bank 1

Bank 0

Thread 15

Thread 7

Thread 6

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

s=3

Image from http://courses.engr.illinois.edu/ece498/al/Syllabus.html
32

Bank Conflicts

• Without using a profiler, how can we tell what kind of
speedup we can expect by removing bank conflicts?

• What happens if more than one thread in a warp writes
to the same shared memory address (non-atomic
instruction)?

33

Partition Camping

• “Bank conflicts” of global
memory

• Global memory divided
into 6 (G80) or 8 (GT200)
256-byte partitions

• The 1 million KBps
question: How do active
half-warps in your kernel
access memory?

Image: [Reutsch & Micikevicius, 2010] 34

2/8/2012

9

Fixing Partition Camping

• Diagonalize block indices
blockIdx_y=blockIdx.x;

blockIdx_x=

(blockIdx.x+blockIdx.y)

%gridDim.x;

• Output:

• Not a problem in Fermi (How?)

Image: [Reutsch & Micikevicius, 2010] 35

Page-Locked Host Memory

• Page-locked Memory

– Host memory that is essentially removed from
virtual memory

– Also called Pinned Memory

36

Page-Locked Host Memory

• Benefits
– Overlap kernel execution and data transfers

See G.1 in the NVIDIA CUDA C Programming Guide for full compute capability requirements

Time

Data Transfer Kernel Execution

Data Transfer

Kernel Execution

Normally:

Paged-locked:

37

Page-Locked Host Memory

• Benefits

– Increased memory bandwidth for systems with a
front-side bus

• Up to ~2x throughput

Image from http://arstechnica.com/hardware/news/2009/10/day-of-nvidia-chipset-reckoning-arrives.ars
38

2/8/2012

10

Page-Locked Host Memory

• Benefits

– Option: Write-Combining Memory

• Disables page-locked memory’s default caching

• Allocate with cudaHostAllocWriteCombined to

– Avoid polluting L1 and L2 caches

– Avoid snooping transfers across PCIe

» Improve transfer performance up to 40% - in theory

• Reading from write-combining memory is slow!
– Only write to it from the host

39

Page-Locked Host Memory

• Benefits

– Paged-locked host memory can be mapped into
the address space of the device on some systems

• What systems allow this?

• What does this eliminate?

• What applications does this enable?

– Call cudaGetDeviceProperties() and
check canMapHostMemory

 40

Page-Locked Host Memory

 Usage:

cudaHostAlloc() / cudaMallocHost()

cudaHostFree()

cudaMemcpyAsync()

See 3.2.5 in the NVIDIA CUDA C Programming Guide
41

Page-Locked Host Memory

• What’s the catch?

– Page-locked memory is scarce

• Allocations will start failing before allocation of in
pageable memory

– Reduces amount of physical memory available to
the OS for paging

• Allocating too much will hurt overall system
performance

42

2/8/2012

11

Streams

• Stream: Sequence of commands that execute in order
• Streams may execute their commands out-of-order or concurrently

with respect to other streams

Command 0

Command 1

Command 2

Command 0

Command 1

Command 2

Stream A Stream B

43

Streams

Command 0

Command 1

Command 2

Command 0

Command 1

Command 2

Stream A Stream B Time

Command 0

Command 1

Command 2

Command 0

Command 1

Command 2

 Is this a possible order?

44

Streams

Command 0

Command 1

Command 2

Command 0

Command 1

Command 2

Stream A Stream B Time

Command 0

Command 1

Command 2

Command 0

Command 1

Command 2

 Is this a possible order?

45

Streams

Command 0

Command 1

Command 2

Command 0

Command 1

Command 2

Stream A Stream B Time

Command 0

Command 1

Command 2

Command 0

Command 1

Command 2

 Is this a possible order?

46

2/8/2012

12

Streams

Command 0

Command 1

Command 2

Command 0

Command 1

Command 2

Stream A Stream B Time

Command 0

Command 2

Command 1

Command 0

Command 2

Command 1

 Is this a possible order?

47

Streams

Command 0

Command 1

Command 2

Command 0

Command 1

Command 2

Stream A Stream B Time

Command 0

Command 1

Command 2

Command 0

Command 1

Command 2

 Is this a possible order?

48

Streams

• In CUDA, what commands go in a stream?

– Kernel launches

– Host device memory transfers

49

Streams

• Code Example

1. Create two streams

2. Each stream:

1. Copy page-locked memory to device

2. Launch kernel

3. Copy memory back to host

3. Destroy streams

50

2/8/2012

13

Stream Example (Step 1 of 3)

cudaStream_t stream[2];

for (int i = 0; i < 2; ++i)

{

 cudaStreamCreate(&stream[i]);

}

float *hostPtr;

cudaMallocHost(&hostPtr, 2 * size);

51

cudaStream_t stream[2];

for (int i = 0; i < 2; ++i)

{

 cudaStreamCreate(&stream[i]);

}

float *hostPtr;

cudaMallocHost(&hostPtr, 2 * size);

Create two streams

Stream Example (Step 1 of 3)

52

cudaStream_t stream[2];

for (int i = 0; i < 2; ++i)

{

 cudaStreamCreate(&stream[i]);

}

float *hostPtr;

cudaMallocHost(&hostPtr, 2 * size);

Allocate two buffers in page-locked memory

Stream Example (Step 1 of 3)

53

for (int i = 0; i < 2; ++i)

{

 cudaMemcpyAsync(/* ... */,

 cudaMemcpyHostToDevice, stream[i]);

 kernel<<<100, 512, 0, stream[i]>>>

 (/* ... */);

 cudaMemcpyAsync(/* ... */,

 cudaMemcpyDeviceToHost, stream[i]);

}

Stream Example (Step 2 of 3)

54

2/8/2012

14

Stream Example (Step 2 of 3)

for (int i = 0; i < 2; ++i)

{

 cudaMemcpyAsync(/* ... */,

 cudaMemcpyHostToDevice, stream[i]);

 kernel<<<100, 512, 0, stream[i]>>>

 (/* ... */);

 cudaMemcpyAsync(/* ... */,

 cudaMemcpyDeviceToHost, stream[i]);

}

Commands are assigned to, and executed by streams 55

Stream Example (Step 3 of 3)

for (int i = 0; i < 2; ++i)

{

 // Blocks until commands complete

 cudaStreamDestroy(stream[i]);

}

56

Streams

• Assume compute capabilities:

– Overlap of data transfer and kernel execution

– Concurrent kernel execution

– Concurrent data transfer

• How can the streams overlap?

See F.1 in the NVIDIA CUDA C Programming Guide for more on compute capabilities
57

Streams

Time

Kernel execution

Stream A Stream B

Host device memory

Device to host memory Kernel execution

Host device memory

Device to host memory

• Can we have more overlap than this?

58

2/8/2012

15

Streams

Time

Kernel execution

Stream A Stream B

Host device memory

Device to host memory

Kernel execution

Host device memory

Device to host memory

• Can we have this?

59

Streams

Time

Kernel execution

Stream A

Stream B

Host device memory

Device to host memory Kernel execution

Host device memory

Device to host memory

• Can we have this?

Dependent

on kernel

completion

Blocked until kernel from

Stream A completes
60

Streams

• Performance Advice

– Issue all independent commands before
dependent ones

– Delay synchronization (implicit or explicit) as long
as possible

61

• Rewrite this to allow concurrent kernel
execution

Streams

for (int i = 0; i < 2; ++i)

{

 cudaMemcpyAsync(/* ... */, stream[i]);

 kernel<<< /*... */ stream[i]>>>();

 cudaMemcpyAsync(/* ... */, stream[i]);

}

62

2/8/2012

16

Streams

for (int i = 0; i < 2; ++i) // to device

 cudaMemcpyAsync(/* ... */, stream[i]);

for (int i = 0; i < 2; ++i)

 kernel<<< /*... */ stream[i]>>>();

for (int i = 0; i < 2; ++i) // to host

 cudaMemcpyAsync(/* ... */, stream[i]);

63

Streams

• Explicit Synchronization
– cudaThreadSynchronize()

• Blocks until commands in all streams finish

– cudaStreamSynchronize()

• Blocks until commands in a stream finish

See 3.2.5.5.3 in the NVIDIA CUDA C Programming Guide for more synchronization functions
64

References

• CUDA C Best Practices Guide, version 4.1

• CUDA C Programming Guide, version 4.1

• Reutsch, Greg and Micikevicius, Paulius.
“Optimizing Matrix Transpose in CUDA.” June
2010.

• Volkov, Vasily. “Unrolling parallel loops.”
November 14, 2011. Slides

65

Bibliography

• Optimal Parallel Reduction Proof with Brent’s
Theorem

• Vasily Volkov. “Better Performance at Lower
Occupancy.” Slides

• Mark Harris. “Optimizing Parallel Reduction in
CUDA.” Slides

66

http://www.cs.berkeley.edu/~volkov/volkov11-unrolling.pdf
http://www.eli.sdsu.edu/courses/spring96/cs662/notes/speedup/speedup.html
http://www.cs.berkeley.edu/~volkov/volkov10-GTC.pdf
http://www.seas.upenn.edu/~cis565/LECTURES/61609-2.pdf

