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Parallel Reduction
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� Recall Parallel Reduction (sum)
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Parallel Reduction
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Parallel Reduction

� Similar to brackets for a basketball tournament
� log(n) passes for n elements

� How would you implement this in CUDA?
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__shared__ float partialSum[];

// ... load into shared memory

unsigned int t = threadIdx .x;

for ( unsigned int stride = 1; 

stride < blockDim .x;

stride *= 2) 

{

__syncthreads ();

if (t % (2 * stride) == 0)

partialSum[t] += 

partialSum[t + stride];

}
Code from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

__shared__ float partialSum[];

// ... load into shared memory

unsigned int t = threadIdx .x;

for ( unsigned int stride = 1; 

stride < blockDim .x;

stride *= 2) 

{

__syncthreads ();

if (t % (2 * stride) == 0)

partialSum[t] += 

partialSum[t + stride];

}
Code from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

Computing the sum for the 
elements in shared memory

__shared__ float partialSum[];

// ... load into shared memory

unsigned int t = threadIdx .x;

for ( unsigned int stride = 1; 

stride < blockDim .x;

stride *= 2) 

{

__syncthreads ();

if (t % (2 * stride) == 0)

partialSum[t] += 

partialSum[t + stride];

}
Code from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

Stride :
1, 2, 4, …

__shared__ float partialSum[];

// ... load into shared memory

unsigned int t = threadIdx .x;

for ( unsigned int stride = 1; 

stride < blockDim .x;

stride *= 2) 

{

__syncthreads ();

if (t % (2 * stride) == 0)

partialSum[t] += 

partialSum[t + stride];

}
Code from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

Why?
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__shared__ float partialSum[];

// ... load into shared memory

unsigned int t = threadIdx .x;

for ( unsigned int stride = 1; 

stride < blockDim .x;

stride *= 2) 

{

__syncthreads ();

if (t % (2 * stride) == 0)

partialSum[t] += 

partialSum[t + stride];

}
Code from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

• Compute sum in same shared memory
• As stride increases, what do more threads do?
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� 1st pass: threads 1, 3, 5, and 7 don’t do anything
� Really only need n/2 threads for n elements
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� 2nd pass: threads 2 and 6 also don’t do anything
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� 3rd pass: thread 4 also doesn’t do anything
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� In general, number of required threads cuts in half 
after each pass

Parallel Reduction

� What if we tweaked the implementation?

Parallel Reduction

0 1 52 3 4 6 7



6

Parallel Reduction
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Code from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

stride : …, 4, 2, 1

__shared__ float partialSum[]

// ... load into shared memory

unsigned int t = threadIdx .x;

for ( unsigned int stride = blockDim .x / 2; 

stride > 0;

stride /= 2) 

{

__syncthreads ();

if (t < stride)

partialSum[t] += 

partialSum[t + stride];

}
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Code from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

__shared__ float partialSum[]

// ... load into shared memory

unsigned int t = threadIdx .x;

for ( unsigned int stride = blockDim .x / 2; 

stride > 0;

stride /= 2) 

{

__syncthreads ();

if (t < stride)

partialSum[t] += 

partialSum[t + stride];

}
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� 1st pass: threads 4, 5, 6, and 7 don’t do anything
� Really only need n/2 threads for n elements
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� 2nd pass: threads 2 and 3 also don’t do anything



8

Thread
7

Thread
6

Thread
5

Thread
4

Thread
3

Thread
2

Thread
0

Thread
1

Parallel Reduction

0 1 52 3 4 6 7

4 6 8 10

12 16

28

� 3rd pass: thread 1 also doesn’t do anything

Parallel Reduction
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� What is the difference?

stride = 1, 2, 4, … stride = 4, 2, 1, …

Parallel Reduction

� What is the difference?

if (t < stride)

partialSum[t] += 

partialSum[t + stride];

if (t % (2 * stride) == 0)

partialSum[t] += 

partialSum[t + stride];

stride = 1, 2, 4, … stride = 4, 2, 1, …

Warp Partitioning

� Warp Partitioning:  how threads from a 
block are divided into warps
� Knowledge of warp partitioning can be 

used to:
�Minimize divergent branches

�Retire warps early
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Understand warp 
partitioning     make 

your code run 
faster

Warp Partitioning

� Partition based on consecutive increasing
threadIdx

Warp Partitioning

� 1D Block
� threadIdx .x between 0 and 512 (G80/GT200)
�Warp n
� Starts with thread 32n

� Ends with thread 32(n + 1) – 1

�Last warp is padded if block size is not a multiple 
of 32

0…31 32...63 64...95 96...127

Warp 0 Warp 1 Warp 2 Warp 3

…

Warp Partitioning

� 2D Block
� Increasing threadIdx means
� Increasing threadIdx .x

� Starting with row threadIdx .y == 0
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Warp Partitioning

Image from http://courses.engr.illinois.edu/ece498/al/textbook/Chapter5-CudaPerformance.pdf

� 2D Block

Warp Partitioning

� 3D Block
�Start with threadIdx .z == 0

�Partition as a 2D block
� Increase threadIdx .z and repeat

Image from:  http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf 

Warp Partitioning

Divergent branches are within a warp!

Warp Partitioning

� For warpSize == 32 , does any warp 
have a divergent branch with this code:

if ( threadIdx .x > 15)

{

// ...

}
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Warp Partitioning

� For any warpSize > 1 , does any warp 
have a divergent branch with this code:

if ( threadIdx .x > warpSize - 1)

{

// ...

}

Warp Partitioning

� Given knowledge of warp partitioning, 
which parallel reduction is better?

if (t < stride)

partialSum[t] += 

partialSum[t + stride];

if (t % (2 * stride) == 0)

partialSum[t] += 

partialSum[t + stride];

stride = 1, 2, 4, … stride = 4, 2, 1, …

Warp Partitioning

stride = 1, 2, 4, … stride = 4, 2, 1, …
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� Pretend warpSize == 2

Warp Partitioning

� 1st Pass
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Warp Partitioning

� 2nd Pass
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Warp Partitioning

� 2nd Pass
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Warp Partitioning

� 2nd Pass

stride = 1, 2, 4, … stride = 4, 2, 1, …
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Still diverge when number of 
elements left is <= warpSize

Warp Partitioning

� Good partitioning also allows warps to be 
retired early.
�Better hardware utilization

if (t < stride)

partialSum[t] += 

partialSum[t + stride];

if (t % (2 * stride) == 0)

partialSum[t] += 

partialSum[t + stride];

stride = 1, 2, 4, … stride = 4, 2, 1, …
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Warp Partitioning

stride = 1, 2, 4, … stride = 4, 2, 1, …
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� Parallel Reduction

Warp Partitioning

� 1st Pass
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Warp Partitioning

� 1st Pass
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� 2nd Pass
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Warp Partitioning

� 2nd Pass

stride = 1, 2, 4, … stride = 4, 2, 1, …
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Memory Coalescing

� Given a matrix stored row-major in global 
memory, what is a thread’s desirable 
access pattern?

Image from:  http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf 
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Memory Coalescing

� Given a matrix stored row-major in global 
memory, what is a thread’s desirable 
access pattern?

Image from:  http://courses.engr.illinois.edu/ece498/al/textbook/Chapter5-CudaPerformance.pdf 
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Thread 0

Thread 1

Thread
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a) column after column? b) row after row?

Memory Coalescing

� Given a matrix stored row-major in global 
memory, what is a thread’s desirable 
access pattern?
�a) column after column
� Individual threads read increasing, consecutive 

memory address

�b) row after row
� Adjacent threads read increasing, consecutive 

memory addresses
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Memory Coalescing

Image from:  http://courses.engr.illinois.edu/ece498/al/textbook/Chapter5-CudaPerformance.pdf 

a) column after column

Memory Coalescing

Image from:  http://courses.engr.illinois.edu/ece498/al/textbook/Chapter5-CudaPerformance.pdf 

b) row after row

Memory Coalescing

Image from:  http://courses.engr.illinois.edu/ece498/al/textbook/Chapter5-CudaPerformance.pdf 

Recall warp partitioning; if these 
threads are in the same warp, global 
memory addresses are increasing and 
consecutive across warps.

Memory Coalescing

� Global memory bandwidth (DRAM)
�G80 – 86.4 GB/s
�GT200 – 150 GB/s

� Achieve peak bandwidth by requesting 
large, consecutive locations from DRAM
�Accessing random location results in much 

lower bandwidth
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Memory Coalescing

� Memory coalescing – rearrange access 
patterns to improve performance
� Useful today but will be less useful with 

large on-chip caches

Memory Coalescing

� The GPU coalesce consecutive reads in a 
half-warp into a single read
� Strategy:  read global memory in a 

coalesce-able fashion into shared memory
�Then access shared memory randomly at 

maximum bandwidth
� Ignoring bank conflicts – next lecture

See Appendix G in the NVIDIA CUDA C Programming Guide for coalescing alignment requirements

SM Resource Partitioning

� Recall a SM dynamically partitions 
resources:

Registers

Thread block slots

Thread slots

Shared memory

SM

SM Resource Partitioning

� Recall a SM dynamically partitions 
resources:

Registers

Thread block slots

Thread slots

Shared memory

SM

8

768

8K registers / 32K memory

16K

G80 Limits   
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SM Resource Partitioning

� We can have
�8 blocks of 96 threads
�4 blocks of 192 threads
�But not 8 blocks of 192 threads

Registers

Thread block slots

Thread slots

Shared memory

SM

8

768

8K registers / 32K memory

16K

G80 Limits   

SM Resource Partitioning

� We can have (assuming 256 thread blocks)
�768 threads (3 blocks) using 10 registers each
�512 threads (2 blocks) using 11 registers each

Registers

Thread block slots

Thread slots

Shared memory

SM

8

768

8K registers / 32K memory

16K

G80 Limits   

SM Resource Partitioning

� We can have (assuming 256 thread blocks)
�768 threads (3 blocks) using 10 registers each
�512 threads (2 blocks) using 11 registers each

Registers

Thread block slots

Thread slots

Shared memory

SM

8

768

8K registers / 32K memory

16K

G80 Limits   
� More registers 

decreases thread-
level parallelism
� Can it ever 

increase 
performance?

SM Resource Partitioning

� Performance Cliff:  Increasing resource 
usage leads to a dramatic reduction in 
parallelism
�For example, increasing the number of 

registers, unless doing so hides latency of 
global memory access
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SM Resource Partitioning

� CUDA Occupancy Calculator
�http://developer.download.nvidia.com/comput

e/cuda/CUDA_Occupancy_calculator.xls

Data Prefetching

� Independent instructions between a global 
memory read and its use can hide memory 
latency

float m = Md[i];

float f = a * b + c * d;

float f2 = m * f;

Data Prefetching

� Independent instructions between a global 
memory read and its use can hide memory 
latency

float m = Md[i];

float f = a * b + c * d;

float f2 = m * f;

Read global memory

Data Prefetching

� Independent instructions between a global 
memory read and its use can hide memory 
latency

float m = Md[i];

float f = a * b + c * d;

float f2 = m * f;

Execute instructions 
that are not dependent 
on memory read
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Data Prefetching

� Independent instructions between a global 
memory read and its use can hide memory 
latency

float m = Md[i];

float f = a * b + c * d;

float f2 = m * f; Use global memory after 
the above line from 
enough warps hide the 
memory latency

Data Prefetching

� Prefetching data from global memory can 
effectively increase the number of 
independent instructions between global 
memory read and use

Data Prefetching

� Recall tiled matrix multiply:

for ( /* ... */ )

{

// Load current tile into shared memory

__syncthreads ();

// Accumulate dot product

__syncthreads ();

}

Data Prefetching

� Tiled matrix multiply with prefetch:

// Load first tile into registers

for ( /* ... */ )

{

// Deposit registers into shared memory

__syncthreads ();

// Load next tile into registers

// Accumulate dot product

__syncthreads ();

}
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Data Prefetching

� Tiled matrix multiply with prefetch:

// Load first tile into registers

for ( /* ... */ )

{

// Deposit registers into shared memory

__syncthreads ();

// Load next tile into registers

// Accumulate dot product

__syncthreads ();

}

Data Prefetching

� Tiled matrix multiply with prefetch:

// Load first tile into registers

for ( /* ... */ )

{

// Deposit registers into shared memory

__syncthreads ();

// Load next tile into registers

// Accumulate dot product

__syncthreads ();

}

Prefetch for next 
iteration of the loop

Data Prefetching

� Tiled matrix multiply with prefetch:

// Load first tile into registers

for ( /* ... */ )

{

// Deposit registers into shared memory

__syncthreads ();

// Load next tile into registers

// Accumulate dot product

__syncthreads ();

}

These instructions 
executed by enough 
threads will hide the 
memory latency of the 
prefetch


