
1

CUDA Performance
Considerations
(1 of 2)
Patrick Cozzi
University of Pennsylvania
CIS 565 - Spring 2012

Agenda

� Parallel Reduction Revisited
� Warp Partitioning
� Memory Coalescing
� Dynamic Partitioning of SM Resources
� Data Prefetching

Efficient data-
parallel algorithms

Optimizations based
on GPU Architecture

Maximum
Performance

+

=

Parallel Reduction

0 1 52 3 4 6 7

� Recall Parallel Reduction (sum)

2

Parallel Reduction

0 1 52 3 4 6 7

1 5 9 13

Parallel Reduction

0 1 52 3 4 6 7

1 5 9 13

6 22

Parallel Reduction

0 1 52 3 4 6 7

1 5 9 13

6 22

28

Parallel Reduction

� Similar to brackets for a basketball tournament
� log(n) passes for n elements

� How would you implement this in CUDA?

3

__shared__ float partialSum[];

// ... load into shared memory

unsigned int t = threadIdx .x;

for (unsigned int stride = 1;

stride < blockDim .x;

stride *= 2)

{

__syncthreads ();

if (t % (2 * stride) == 0)

partialSum[t] +=

partialSum[t + stride];

}
Code from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

__shared__ float partialSum[];

// ... load into shared memory

unsigned int t = threadIdx .x;

for (unsigned int stride = 1;

stride < blockDim .x;

stride *= 2)

{

__syncthreads ();

if (t % (2 * stride) == 0)

partialSum[t] +=

partialSum[t + stride];

}
Code from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

Computing the sum for the
elements in shared memory

__shared__ float partialSum[];

// ... load into shared memory

unsigned int t = threadIdx .x;

for (unsigned int stride = 1;

stride < blockDim .x;

stride *= 2)

{

__syncthreads ();

if (t % (2 * stride) == 0)

partialSum[t] +=

partialSum[t + stride];

}
Code from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

Stride :
1, 2, 4, …

__shared__ float partialSum[];

// ... load into shared memory

unsigned int t = threadIdx .x;

for (unsigned int stride = 1;

stride < blockDim .x;

stride *= 2)

{

__syncthreads ();

if (t % (2 * stride) == 0)

partialSum[t] +=

partialSum[t + stride];

}
Code from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

Why?

4

__shared__ float partialSum[];

// ... load into shared memory

unsigned int t = threadIdx .x;

for (unsigned int stride = 1;

stride < blockDim .x;

stride *= 2)

{

__syncthreads ();

if (t % (2 * stride) == 0)

partialSum[t] +=

partialSum[t + stride];

}
Code from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

• Compute sum in same shared memory
• As stride increases, what do more threads do?

Thread
7

Thread
6

Thread
5

Thread
4

Thread
3

Thread
2

Parallel Reduction

0 1 52 3 4 6 7

1 5 9 13

6 22

28

Thread
0

Thread
1

Thread
7

Thread
6

Thread
5

Thread
4

Thread
3

Thread
2

Parallel Reduction

0 1 52 3 4 6 7

1 5 9 13

6 22

28

Thread
0

Thread
1

� 1st pass: threads 1, 3, 5, and 7 don’t do anything
� Really only need n/2 threads for n elements

Thread
7

Thread
6

Thread
5

Thread
4

Thread
3

Thread
2

Parallel Reduction

0 1 52 3 4 6 7

1 5 9 13

6 22

28

Thread
0

Thread
1

� 2nd pass: threads 2 and 6 also don’t do anything

5

Thread
7

Thread
6

Thread
5

Thread
4

Thread
3

Thread
2

Parallel Reduction

0 1 52 3 4 6 7

1 5 9 13

6 22

28

Thread
0

Thread
1

� 3rd pass: thread 4 also doesn’t do anything

Thread
7

Thread
6

Thread
5

Thread
4

Thread
3

Thread
2

Parallel Reduction

0 1 52 3 4 6 7

1 5 9 13

6 22

28

Thread
0

Thread
1

� In general, number of required threads cuts in half
after each pass

Parallel Reduction

� What if we tweaked the implementation?

Parallel Reduction

0 1 52 3 4 6 7

6

Parallel Reduction

0 1 52 3 4 6 7

4 6 8 10

Parallel Reduction

0 1 52 3 4 6 7

4 6 8 10

12 16

Parallel Reduction

0 1 52 3 4 6 7

4 6 8 10

12 16

28

Code from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

stride : …, 4, 2, 1

__shared__ float partialSum[]

// ... load into shared memory

unsigned int t = threadIdx .x;

for (unsigned int stride = blockDim .x / 2;

stride > 0;

stride /= 2)

{

__syncthreads ();

if (t < stride)

partialSum[t] +=

partialSum[t + stride];

}

7

Code from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

__shared__ float partialSum[]

// ... load into shared memory

unsigned int t = threadIdx .x;

for (unsigned int stride = blockDim .x / 2;

stride > 0;

stride /= 2)

{

__syncthreads ();

if (t < stride)

partialSum[t] +=

partialSum[t + stride];

}

Thread
7

Thread
6

Thread
5

Thread
4

Thread
3

Thread
2

Thread
0

Thread
1

Parallel Reduction

0 1 52 3 4 6 7

4 6 8 10

12 16

28

Thread
7

Thread
6

Thread
5

Thread
4

Thread
3

Thread
2

Thread
0

Thread
1

Parallel Reduction

0 1 52 3 4 6 7

4 6 8 10

12 16

28

� 1st pass: threads 4, 5, 6, and 7 don’t do anything
� Really only need n/2 threads for n elements

Thread
7

Thread
6

Thread
5

Thread
4

Thread
3

Thread
2

Thread
0

Thread
1

Parallel Reduction

0 1 52 3 4 6 7

4 6 8 10

12 16

28

� 2nd pass: threads 2 and 3 also don’t do anything

8

Thread
7

Thread
6

Thread
5

Thread
4

Thread
3

Thread
2

Thread
0

Thread
1

Parallel Reduction

0 1 52 3 4 6 7

4 6 8 10

12 16

28

� 3rd pass: thread 1 also doesn’t do anything

Parallel Reduction

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

� What is the difference?

stride = 1, 2, 4, … stride = 4, 2, 1, …

Parallel Reduction

� What is the difference?

if (t < stride)

partialSum[t] +=

partialSum[t + stride];

if (t % (2 * stride) == 0)

partialSum[t] +=

partialSum[t + stride];

stride = 1, 2, 4, … stride = 4, 2, 1, …

Warp Partitioning

� Warp Partitioning: how threads from a
block are divided into warps
� Knowledge of warp partitioning can be

used to:
�Minimize divergent branches

�Retire warps early

9

Understand warp
partitioning make

your code run
faster

Warp Partitioning

� Partition based on consecutive increasing
threadIdx

Warp Partitioning

� 1D Block
� threadIdx .x between 0 and 512 (G80/GT200)
�Warp n
� Starts with thread 32n

� Ends with thread 32(n + 1) – 1

�Last warp is padded if block size is not a multiple
of 32

0…31 32...63 64...95 96...127

Warp 0 Warp 1 Warp 2 Warp 3

…

Warp Partitioning

� 2D Block
� Increasing threadIdx means
� Increasing threadIdx .x

� Starting with row threadIdx .y == 0

10

Warp Partitioning

Image from http://courses.engr.illinois.edu/ece498/al/textbook/Chapter5-CudaPerformance.pdf

� 2D Block

Warp Partitioning

� 3D Block
�Start with threadIdx .z == 0

�Partition as a 2D block
� Increase threadIdx .z and repeat

Image from: http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf

Warp Partitioning

Divergent branches are within a warp!

Warp Partitioning

� For warpSize == 32 , does any warp
have a divergent branch with this code:

if (threadIdx .x > 15)

{

// ...

}

11

Warp Partitioning

� For any warpSize > 1 , does any warp
have a divergent branch with this code:

if (threadIdx .x > warpSize - 1)

{

// ...

}

Warp Partitioning

� Given knowledge of warp partitioning,
which parallel reduction is better?

if (t < stride)

partialSum[t] +=

partialSum[t + stride];

if (t % (2 * stride) == 0)

partialSum[t] +=

partialSum[t + stride];

stride = 1, 2, 4, … stride = 4, 2, 1, …

Warp Partitioning

stride = 1, 2, 4, … stride = 4, 2, 1, …

Warp
0

Warp
1

Warp
2

Warp
3

Warp
0

Warp
1

Warp
2

Warp
3

� Pretend warpSize == 2

Warp Partitioning

� 1st Pass

stride = 1, 2, 4, … stride = 4, 2, 1, …

Warp
0

Warp
1

Warp
2

Warp
3

Warp
0

Warp
1

Warp
2

Warp
3

4
divergent
branches

0
divergent
branches

12

Warp Partitioning

� 2nd Pass

stride = 1, 2, 4, … stride = 4, 2, 1, …

Warp
0

Warp
1

Warp
2

Warp
3

Warp
0

Warp
1

Warp
2

Warp
3

2
divergent
branches

0
divergent
branches

Warp Partitioning

� 2nd Pass

stride = 1, 2, 4, … stride = 4, 2, 1, …

Warp
0

Warp
1

Warp
2

Warp
3

Warp
0

Warp
1

Warp
2

Warp
3

1
divergent
branch

1
divergent
branch

Warp Partitioning

� 2nd Pass

stride = 1, 2, 4, … stride = 4, 2, 1, …

Warp
0

Warp
1

Warp
2

Warp
3

Warp
0

Warp
1

Warp
2

Warp
3

1
divergent
branch

1
divergent
branch

Still diverge when number of
elements left is <= warpSize

Warp Partitioning

� Good partitioning also allows warps to be
retired early.
�Better hardware utilization

if (t < stride)

partialSum[t] +=

partialSum[t + stride];

if (t % (2 * stride) == 0)

partialSum[t] +=

partialSum[t + stride];

stride = 1, 2, 4, … stride = 4, 2, 1, …

13

Warp Partitioning

stride = 1, 2, 4, … stride = 4, 2, 1, …

Warp
0

Warp
1

Warp
2

Warp
3

Warp
0

Warp
1

Warp
2

Warp
3

� Parallel Reduction

Warp Partitioning

� 1st Pass

stride = 1, 2, 4, … stride = 4, 2, 1, …

Warp
0

Warp
1

Warp
2

Warp
3

Warp
0

Warp
1

Warp
2

Warp
3

0
warps
retired

2
warps
retired

Warp Partitioning

� 1st Pass

stride = 1, 2, 4, … stride = 4, 2, 1, …

Warp
0

Warp
1

Warp
2

Warp
3

Warp
0

Warp
1

Warp
2

Warp
3

Warp Partitioning

� 2nd Pass

stride = 1, 2, 4, … stride = 4, 2, 1, …

Warp
0

Warp
1

Warp
2

Warp
3

Warp
0

Warp
1

Warp
2

Warp
3

1
warp

retired

2
warps
retired

14

Warp Partitioning

� 2nd Pass

stride = 1, 2, 4, … stride = 4, 2, 1, …

Warp
0

Warp
1

Warp
2

Warp
3

Warp
0

Warp
1

Warp
2

Warp
3

Memory Coalescing

� Given a matrix stored row-major in global
memory, what is a thread’s desirable
access pattern?

Image from: http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf

M2,0

M1,1

M1,0M0,0

M0,1

M3,0

M2,1 M3,1

M2,0M1,0M0,0 M3,0 M1,1M0,1 M2,1 M3,1 M1,2M0,2 M2,2 M3,2

M1,2M0,2 M2,2 M3,2

M1,3M0,3 M2,3 M3,3

M1,3M0,3 M2,3 M3,3

M

Memory Coalescing

� Given a matrix stored row-major in global
memory, what is a thread’s desirable
access pattern?

Image from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter5-CudaPerformance.pdf

Md Nd

W
ID

T
H

WIDTH

Thread 0

Thread 1

Thread
0

Thread
1

a) column after column? b) row after row?

Memory Coalescing

� Given a matrix stored row-major in global
memory, what is a thread’s desirable
access pattern?
�a) column after column
� Individual threads read increasing, consecutive

memory address

�b) row after row
� Adjacent threads read increasing, consecutive

memory addresses

15

Memory Coalescing

Image from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter5-CudaPerformance.pdf

a) column after column

Memory Coalescing

Image from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter5-CudaPerformance.pdf

b) row after row

Memory Coalescing

Image from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter5-CudaPerformance.pdf

Recall warp partitioning; if these
threads are in the same warp, global
memory addresses are increasing and
consecutive across warps.

Memory Coalescing

� Global memory bandwidth (DRAM)
�G80 – 86.4 GB/s
�GT200 – 150 GB/s

� Achieve peak bandwidth by requesting
large, consecutive locations from DRAM
�Accessing random location results in much

lower bandwidth

16

Memory Coalescing

� Memory coalescing – rearrange access
patterns to improve performance
� Useful today but will be less useful with

large on-chip caches

Memory Coalescing

� The GPU coalesce consecutive reads in a
half-warp into a single read
� Strategy: read global memory in a

coalesce-able fashion into shared memory
�Then access shared memory randomly at

maximum bandwidth
� Ignoring bank conflicts – next lecture

See Appendix G in the NVIDIA CUDA C Programming Guide for coalescing alignment requirements

SM Resource Partitioning

� Recall a SM dynamically partitions
resources:

Registers

Thread block slots

Thread slots

Shared memory

SM

SM Resource Partitioning

� Recall a SM dynamically partitions
resources:

Registers

Thread block slots

Thread slots

Shared memory

SM

8

768

8K registers / 32K memory

16K

G80 Limits

17

SM Resource Partitioning

� We can have
�8 blocks of 96 threads
�4 blocks of 192 threads
�But not 8 blocks of 192 threads

Registers

Thread block slots

Thread slots

Shared memory

SM

8

768

8K registers / 32K memory

16K

G80 Limits

SM Resource Partitioning

� We can have (assuming 256 thread blocks)
�768 threads (3 blocks) using 10 registers each
�512 threads (2 blocks) using 11 registers each

Registers

Thread block slots

Thread slots

Shared memory

SM

8

768

8K registers / 32K memory

16K

G80 Limits

SM Resource Partitioning

� We can have (assuming 256 thread blocks)
�768 threads (3 blocks) using 10 registers each
�512 threads (2 blocks) using 11 registers each

Registers

Thread block slots

Thread slots

Shared memory

SM

8

768

8K registers / 32K memory

16K

G80 Limits
� More registers

decreases thread-
level parallelism
� Can it ever

increase
performance?

SM Resource Partitioning

� Performance Cliff: Increasing resource
usage leads to a dramatic reduction in
parallelism
�For example, increasing the number of

registers, unless doing so hides latency of
global memory access

18

SM Resource Partitioning

� CUDA Occupancy Calculator
�http://developer.download.nvidia.com/comput

e/cuda/CUDA_Occupancy_calculator.xls

Data Prefetching

� Independent instructions between a global
memory read and its use can hide memory
latency

float m = Md[i];

float f = a * b + c * d;

float f2 = m * f;

Data Prefetching

� Independent instructions between a global
memory read and its use can hide memory
latency

float m = Md[i];

float f = a * b + c * d;

float f2 = m * f;

Read global memory

Data Prefetching

� Independent instructions between a global
memory read and its use can hide memory
latency

float m = Md[i];

float f = a * b + c * d;

float f2 = m * f;

Execute instructions
that are not dependent
on memory read

19

Data Prefetching

� Independent instructions between a global
memory read and its use can hide memory
latency

float m = Md[i];

float f = a * b + c * d;

float f2 = m * f; Use global memory after
the above line from
enough warps hide the
memory latency

Data Prefetching

� Prefetching data from global memory can
effectively increase the number of
independent instructions between global
memory read and use

Data Prefetching

� Recall tiled matrix multiply:

for (/* ... */)

{

// Load current tile into shared memory

__syncthreads ();

// Accumulate dot product

__syncthreads ();

}

Data Prefetching

� Tiled matrix multiply with prefetch:

// Load first tile into registers

for (/* ... */)

{

// Deposit registers into shared memory

__syncthreads ();

// Load next tile into registers

// Accumulate dot product

__syncthreads ();

}

20

Data Prefetching

� Tiled matrix multiply with prefetch:

// Load first tile into registers

for (/* ... */)

{

// Deposit registers into shared memory

__syncthreads ();

// Load next tile into registers

// Accumulate dot product

__syncthreads ();

}

Data Prefetching

� Tiled matrix multiply with prefetch:

// Load first tile into registers

for (/* ... */)

{

// Deposit registers into shared memory

__syncthreads ();

// Load next tile into registers

// Accumulate dot product

__syncthreads ();

}

Prefetch for next
iteration of the loop

Data Prefetching

� Tiled matrix multiply with prefetch:

// Load first tile into registers

for (/* ... */)

{

// Deposit registers into shared memory

__syncthreads ();

// Load next tile into registers

// Accumulate dot product

__syncthreads ();

}

These instructions
executed by enough
threads will hide the
memory latency of the
prefetch

