

Announcements

- Presentation topics due 02/07

Agenda

- Finish atomic functions from Monday

Parallel Reduction

- Given an array of numbers, design a parallel algorithm to find the sum.
- Parallel Algorithms

Consider:
\square Arithmetic intensity: compute to memory access ratio
\square Parallel Reduction

Parallel Reduction

- Given an array of numbers, design a

Parallel Reduction parallel algorithm to find:
\square The sum
\square The maximum value
\square The product of values
\square The average value

- How different are these algorithms?
- Reduction: An operation that computes a single result from a set of data
- Examples:
\square Minimum/maximum value
\square Average, sum, product, etc.
- Parallel Reduction: Do it in parallel. Obviously

Parallel Reduction

Parallel Reduction

All-Prefix-Sums

- All-Prefix-Sums
\square Input
- Array of n elements: $\left[\begin{array}{c}\left.0, a_{1}, \ldots, \beta_{n-1}\right]\end{array}\right.$
- Binary associate operator: \oplus
- Identity: I
\square Outputs the array: $\left[z, a_{0},\left(a_{0} \oplus_{\left.a_{1}\right), \ldots,\left(a_{0}\right.} \oplus_{a_{1}} \oplus_{\ldots} \oplus_{\left.\left.a_{n-2)}\right)\right]}\right.\right.$

All-Prefix-Sums

- Example
\square If \oplus is addition, the array
- [$\left.\begin{array}{llllllll}3 & 1 & 7 & 0 & 4 & 1 & 6 & 3\end{array}\right]$
\square is transformed to
- $[0341111151622]$
- Seems sequential, but there is an efficient parallel solution

Scan

- Scan: all-prefix-sums operation on an array of data
- Exclusive Scan: Element j of the result does not include element j of the input:
-In: $\quad\left[\begin{array}{llllllll}3 & 1 & 7 & 0 & 4 & 1 & 6 & 3\end{array}\right]$
- Out: $\left[\begin{array}{llllllll}0 & 3 & 4 & 11 & 11 & 15 & 16 & 22\end{array}\right]$
- Inclusive Scan (Prescan): All elements including j are summed

```
■In: [\begin{array}{lllllllll}{3}&{1}&{7}&{0}&{4}&{1}&{6}&{3}\end{array}]
■Out: [[3}4
```


Scan

Scan

- Used to convert certain sequential
- Design a parallel algorithm for exclusive scan computation into equivalent parallel
\square In: $\quad\left[\begin{array}{llllllll}3 & 1 & 7 & 0 & 4 & 1 & 6 & 3\end{array}\right]$ computation

- Consider:
\square Total number of additions

Scan

- Naive Parallel Scan: $\mathrm{d}=1,2^{\mathrm{d}-1}=1$

for $\mathrm{d}=1$ to $\log _{2} \mathrm{n}$

Scan

- Naive Parallel Scan: d = 1, $2^{\mathrm{d}-1}=1$
$\square 0 \boxed{2} \square \square \square \square \square \square$

Scan

- Naive Parallel Scan: d = 1, $2^{\mathrm{d}-1}=1$

Scan

- Naive Parallel Scan: $\mathrm{d}=1,2^{\mathrm{d}-1}=1$

Scan

- Naive Parallel Scan: d = 1, $2^{\mathrm{d}-1}=1$

| 0 | 1 | 2 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- |

$\square 0 \square \boxed{15} \square \square \square$
\qquad

Scan

- Naive Parallel Scan: $\mathrm{d}=1,2^{\mathrm{d}-1}=1$

0	1	2	3	4	5	6

- Recall, it runs in parallel!

Scan

Scan

- Naive Parallel Scan: $\mathrm{d}=2,2^{\mathrm{d}-1}=2$

- Consider only k = 7
- Naive Parallel Scan: d=2, $2^{\mathrm{d}-1}=2$

Scan

- Naive Parallel Scan: $\mathrm{d}=3,2^{\mathrm{d}-1}=4$

Scan

- Naive Parallel Scan
\square What is naive about this algorithm?
- What was the work complexity for sequential scan?
- What is the work complexity for this?

Stream Compaction

- Stream Compaction

Stream Compaction

- Stream Compaction
\square Given an array of elements
- Create a new array with elements that meet a certain
\square Given an array of elements
- Create a new array with elements that meet a certain criteria, e.g. non null
- Preserve order
- Preserve order

```
la crllllllllllll
```


Stream Compaction

- Stream Compaction
\square Used in collision detection, sparse matrix compression, etc.
\square Can reduce bandwidth from GPU to CPU

Stream Compaction

- Stream Compaction
\square Step 1: Compute temporary array

Stream Compaction

- Stream Compaction
\square Step 1: Compute temporary array containing
- 1 if corresponding element meets criteria
- 0 if element does not meet criteria

Stream Compaction

- Stream Compaction
\square Step 1: Compute temporary array

| a | b | c | d | e | f | g | b |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Stream Compaction

- Stream Compaction
\square Step 1: Compute temporary array

Stream Compaction

- Stream Compaction
\square Step 1: Compute temporary array

Stream Compaction

- Stream Compaction
\square Step 1: Compute temporary array

1	0	1	1	0	0

Stream Compaction

- Stream Compaction
\square Step 1: Compute temporary array

- It runs in parallel!

Stream Compaction

- Stream Compaction
\square Step 1: Compute temporary array

a	b	c	d	e	f	g	h

- It runs in paralle!!

Stream Compaction

- Stream Compaction
\square Step 2: Run exclusive scan on temporary array

Stream Compaction

- Stream Compaction
\square Step 2: Run exclusive scan on temporary array

\square Scan runs in parallel
\square What can we do with the results?

Stream Compaction

- Stream Compaction

Stream Compaction

- Stream Compaction
\square Step 3: Scatter
-Result of scan is index into final array
- Only write an element if temporary array has a 1

Scan result:

Final array: $\begin{array}{llll}\square & \square & \square & \square\end{array}$

Stream Compaction

- Stream Compaction
\square Step 3: Scatter

- Stream Compaction
\square Step 3: Scatter

Final array

0
3

Stream Compaction

- Stream Compaction
\square Step 3: Scatter

Stream Compaction

- Stream Compaction
\square Step 3: Scatter

Summed Area Table

- Summed Area Table (SAT): 2D table where each element stores the sum of all elements in an input image between the lower left corner and the entry location.

Summed Area Table

- Example:

Input image

$$
(1+1+0)+(1+2+1)+(0+1+2)=9
$$

Summed Area Table

Summed Area Table

- Benefit
\square Used to perform different width filters at every
■ Uses pixel in the image in constant time per pixel
\square Glossy environment
\square Just sample four pixels in SAT: reflections and refractions

$$
s_{f i l e r}=\frac{s_{u r}-s_{u l}-s_{l r}+s_{l l}}{w \times h}
$$

\square Approximate depth of field

Summed Area Table

Input image

SAT

Summed Area Table

Input image

SAT

Summed Area Table

Input image

Summed Area Table

Input image

Summed Area Table

How would implement this on the GPU?

Summed Area Table
How would compute a
SAT on the GPU using
inclusive scan?

Summary

- Parallel reductions and scan are building blocks for many algorithms
- An understanding of parallel programming and GPU architecture yields efficient GPU implementations

