
1

Parallel Algorithms

Patrick Cozzi
University of Pennsylvania
CIS 565 - Spring 2012

Announcements

� Presentation topics due 02/07

� Homework 2 due 02/13

Agenda

� Finish atomic functions from Monday
� Parallel Algorithms
�Parallel Reduction
�Scan
�Stream Compression
�Summed Area Tables

Parallel Reduction

� Given an array of numbers, design a
parallel algorithm to find the sum.
� Consider:
� Arithmetic intensity: compute to memory access ratio

2

Parallel Reduction

� Given an array of numbers, design a
parallel algorithm to find:
� The sum
� The maximum value

� The product of values
� The average value

� How different are these algorithms?

Parallel Reduction

� Reduction: An operation that computes a
single result from a set of data
� Examples:
�Minimum/maximum value
�Average, sum, product, etc.

� Parallel Reduction: Do it in parallel.
Obviously

Parallel Reduction

0 1 52 3 4 6 7

� Example. Find the sum:

Parallel Reduction

0 1 52 3 4 6 7

1 5 9 13

3

Parallel Reduction

0 1 52 3 4 6 7

1 5 9 13

6 22

Parallel Reduction

0 1 52 3 4 6 7

1 5 9 13

6 22

28

Parallel Reduction

� Similar to brackets for a basketball tournament
� log(n) passes for n elements

All-Prefix-Sums

� All-Prefix-Sums
� Input
� Array of n elements:

� Binary associate operator:
� Identity: I

�Outputs the array:

Images from http://http.developer.nvidia.com/GPUGems3/gpugems3_ch39.html

4

All-Prefix-Sums

� Example
� If is addition, the array
� [3 1 7 0 4 1 6 3]

� is transformed to
� [0 3 4 11 11 15 16 22]

� Seems sequential, but there is an efficient
parallel solution

Scan

� Scan: all-prefix-sums operation on an
array of data
� Exclusive Scan: Element j of the result

does not include element j of the input:
� In: [3 1 7 0 4 1 6 3]
� Out: [0 3 4 11 11 15 16 22]

� Inclusive Scan (Prescan): All elements
including j are summed
� In: [3 1 7 0 4 1 6 3]
� Out: [3 4 11 11 15 16 22 25]

Scan

� How do you generate an exclusive scan
from an inclusive scan?
� Input: [3 1 7 0 4 1 6 3]

� Inclusive: [3 4 11 11 15 16 22 25]

� Exclusive: [0 3 4 11 11 15 16 22]
� // Shift right, insert identity

� How do you go in the opposite direction?

Scan

� Use cases
� Stream compaction

� Summed-area tables for variable width image processing

� Radix sort

� …

5

Scan

� Used to convert certain sequential
computation into equivalent parallel
computation

Image from http://http.developer.nvidia.com/GPUGems3/gpugems3_ch39.html

Scan

� Design a parallel algorithm for exclusive scan

� In: [3 1 7 0 4 1 6 3]

�Out: [0 3 4 11 11 15 16 22]

� Consider:
� Total number of additions

Scan

� Sequential Scan: single thread, trivial

� n adds for an array of length n
� Work complexity: O(n)
� How many adds will our parallel version

have?

Image from http://http.developer.nvidia.com/GPUGems3/gpugems3_ch39.html

Scan

� Naive Parallel Scan

Image from http://developer.download.nvidia.com/compute/cuda/1_1/Website/projects/scan/doc/scan.pdf

� Is this exclusive or inclusive?

� Each thread
� Writes one sum
� Reads two values

for d = 1 to log 2n

for all k in parallel

if (k >= 2 d-1)

x[k] = x[k – 2 d-1] + x[k];

6

Scan

� Naive Parallel Scan: Input

0 1 52 3 4 6 7

Scan

� Naive Parallel Scan: d = 1, 2 d-1 = 1

0 1 52 3 4 6 7

0

for d = 1 to log 2n

for all k in parallel

if (k >= 2 d-1)

x[k] = x[k – 2 d-1] + x[k];

Scan

� Naive Parallel Scan: d = 1, 2 d-1 = 1

0 1 52 3 4 6 7

0 1

for d = 1 to log 2n

for all k in parallel

if (k >= 2 d-1)

x[k] = x[k – 2 d-1] + x[k];

Scan

� Naive Parallel Scan: d = 1, 2 d-1 = 1

0 1 52 3 4 6 7

0 1 3

for d = 1 to log 2n

for all k in parallel

if (k >= 2 d-1)

x[k] = x[k – 2 d-1] + x[k];

7

Scan

� Naive Parallel Scan: d = 1, 2 d-1 = 1

0 1 52 3 4 6 7

0 1 3 5

for d = 1 to log 2n

for all k in parallel

if (k >= 2 d-1)

x[k] = x[k – 2 d-1] + x[k];

Scan

� Naive Parallel Scan: d = 1, 2 d-1 = 1

0 1 52 3 4 6 7

0 1 3 5 7

for d = 1 to log 2n

for all k in parallel

if (k >= 2 d-1)

x[k] = x[k – 2 d-1] + x[k];

Scan

� Naive Parallel Scan: d = 1, 2 d-1 = 1

0 1 52 3 4 6 7

0 1 93 5 7

for d = 1 to log 2n

for all k in parallel

if (k >= 2 d-1)

x[k] = x[k – 2 d-1] + x[k];

Scan

� Naive Parallel Scan: d = 1, 2 d-1 = 1

0 1 52 3 4 6 7

0 1 93 5 7 11

for d = 1 to log 2n

for all k in parallel

if (k >= 2 d-1)

x[k] = x[k – 2 d-1] + x[k];

8

Scan

� Naive Parallel Scan: d = 1, 2 d-1 = 1

0 1 52 3 4 6 7

0 1 93 5 7 11 13

for d = 1 to log 2n

for all k in parallel

if (k >= 2 d-1)

x[k] = x[k – 2 d-1] + x[k];

Scan

� Naive Parallel Scan: d = 1, 2 d-1 = 1

0 1 52 3 4 6 7

� Recall, it runs in parallel! for d = 1 to log 2n

for all k in parallel

if (k >= 2 d-1)

x[k] = x[k – 2 d-1] + x[k];

Scan

� Naive Parallel Scan: d = 1, 2 d-1 = 1

0 1 52 3 4 6 7

0 1 93 5 7 11 13

� Recall, it runs in parallel! for d = 1 to log 2n

for all k in parallel

if (k >= 2 d-1)

x[k] = x[k – 2 d-1] + x[k];

Scan

� Naive Parallel Scan: d = 2, 2 d-1 = 2

0 1 52 3 4 6 7

0 1 93 5 7 11 13 after d = 1

for d = 1 to log 2n

for all k in parallel

if (k >= 2 d-1)

x[k] = x[k – 2 d-1] + x[k];

9

Scan

� Naive Parallel Scan: d = 2, 2d-1 = 2

0 1 52 3 4 6 7

0 1 93 5 7 11 13

22

after d = 1

� Consider only k = 7
for d = 1 to log 2n

for all k in parallel

if (k >= 2 d-1)

x[k] = x[k – 2 d-1] + x[k];

Scan

� Naive Parallel Scan: d = 2, 2d-1 = 2

0 1 52 3 4 6 7

0 1 93 5 7 11 13

0 1 143 6 10 18 22

after d = 1

after d = 2

for d = 1 to log 2n

for all k in parallel

if (k >= 2 d-1)

x[k] = x[k – 2 d-1] + x[k];

Scan

� Naive Parallel Scan: d = 3, 2d-1 = 4

0 1 52 3 4 6 7

0 1 93 5 7 11 13 after d = 1

after d = 20 1 143 6 10 18 22

for d = 1 to log 2n

for all k in parallel

if (k >= 2 d-1)

x[k] = x[k – 2 d-1] + x[k];

Scan

� Naive Parallel Scan: d = 3, 2d-1 = 4

0 1 52 3 4 6 7

0 1 93 5 7 11 13 after d = 1

after d = 2

28

0 1 143 6 10 18 22

� Consider only k = 7
for d = 1 to log 2n

for all k in parallel

if (k >= 2 d-1)

x[k] = x[k – 2 d-1] + x[k];

10

Scan

� Naive Parallel Scan: Final

0 1 52 3 4 6 7

0 1 93 5 7 11 13

0 1 143 6 10 18 22

0 1 153 6 10 21 28

Scan

� Naive Parallel Scan
�What is naive about this algorithm?
� What was the work complexity for sequential scan?
� What is the work complexity for this?

Stream Compaction

� Stream Compaction
�Given an array of elements
� Create a new array with elements that meet a certain

criteria, e.g. non null
� Preserve order

a b fc d e g h

Stream Compaction

� Stream Compaction
�Given an array of elements
� Create a new array with elements that meet a certain

criteria, e.g. non null
� Preserve order

a b fc d e g h

a c d g

11

Stream Compaction

� Stream Compaction
�Used in collision detection, sparse matrix

compression, etc.
�Can reduce bandwidth from GPU to CPU

a b fc d e g h

a c d g

Stream Compaction

� Stream Compaction
�Step 1: Compute temporary array containing
� 1 if corresponding element meets criteria

� 0 if element does not meet criteria

a b fc d e g h

Stream Compaction

� Stream Compaction
�Step 1: Compute temporary array

a b fc d e g h

1

Stream Compaction

� Stream Compaction
�Step 1: Compute temporary array

a b fc d e g h

1 0

12

Stream Compaction

� Stream Compaction
�Step 1: Compute temporary array

a b fc d e g h

1 0 1

Stream Compaction

� Stream Compaction
�Step 1: Compute temporary array

a b fc d e g h

1 0 1 1

Stream Compaction

� Stream Compaction
�Step 1: Compute temporary array

a b fc d e g h

1 0 1 1 0

Stream Compaction

� Stream Compaction
�Step 1: Compute temporary array

a b fc d e g h

1 0 01 1 0

13

Stream Compaction

� Stream Compaction
�Step 1: Compute temporary array

a b fc d e g h

1 0 01 1 0 1

Stream Compaction

� Stream Compaction
�Step 1: Compute temporary array

a b fc d e g h

1 0 01 1 0 1 0

Stream Compaction

� Stream Compaction
�Step 1: Compute temporary array

a b fc d e g h

� It runs in parallel!

Stream Compaction

� Stream Compaction
�Step 1: Compute temporary array

a b fc d e g h

1 0 01 1 0 1 0

� It runs in parallel!

14

Stream Compaction

� Stream Compaction
�Step 2: Run exclusive scan on temporary array

a b fc d e g h

1 0 01 1 0 1 0

Scan result:

Stream Compaction

� Stream Compaction
�Step 2: Run exclusive scan on temporary array

�Scan runs in parallel
�What can we do with the results?

a b fc d e g h

1 0 01 1 0 1 0

0 1 31 2 3 3 4Scan result:

Stream Compaction

�Stream Compaction
�Step 3: Scatter
�Result of scan is index into final array
�Only write an element if temporary

array has a 1

Stream Compaction

�Stream Compaction
�Step 3: Scatter

a b fc d e g h

1 0 01 1 0 1 0

0 1 31 2 3 3 4Scan result:

Final array:

0 1 2 3

15

Stream Compaction

�Stream Compaction
�Step 3: Scatter

a b fc d e g h

1 0 01 1 0 1 0

0 1 31 2 3 3 4Scan result:

aFinal array:

0 1 2 3

Stream Compaction

�Stream Compaction
�Step 3: Scatter

a b fc d e g h

1 0 01 1 0 1 0

0 1 31 2 3 3 4Scan result:

a cFinal array:

0 1 2 3

Stream Compaction

�Stream Compaction
�Step 3: Scatter

a b fc d e g h

1 0 01 1 0 1 0

0 1 31 2 3 3 4Scan result:

a c dFinal array:

0 1 2 3

Stream Compaction

�Stream Compaction
�Step 3: Scatter

a b fc d e g h

1 0 01 1 0 1 0

0 1 31 2 3 3 4Scan result:

a c d gFinal array:

0 1 2 3

16

Stream Compaction

�Stream Compaction
�Step 3: Scatter

a b fc d e g h

1 0 01 1 0 1 0

0 1 31 2 3 3 4Scan result:

Final array:

� Scatter runs in parallel!0 1 2 3

Stream Compaction

�Stream Compaction
�Step 3: Scatter

a b fc d e g h

1 0 01 1 0 1 0

0 1 31 2 3 3 4Scan result:

a c d gFinal array:

0 1 2 3
� Scatter runs in parallel!

Summed Area Table

� Summed Area Table (SAT): 2D table where
each element stores the sum of all elements
in an input image between the lower left
corner and the entry location.

Summed Area Table

1 1 0 2

1 2 1 0

0 1 2 0

2 1 0 0

Input image

1 2 2 4

2 5 6 8

2 6 9 11

4 9 12 14

SAT

(1 + 1 + 0) + (1 + 2 + 1) + (0 + 1 + 2) = 9

� Example:

17

Summed Area Table

� Benefit
�Used to perform different width filters at every

pixel in the image in constant time per pixel
�Just sample four pixels in SAT:

Image from http://http.developer.nvidia.com/GPUGems3/gpugems3_ch39.html

Summed Area Table

� Uses
�Glossy

environment
reflections and
refractions
�Approximate depth

of field

Image from http://http.developer.nvidia.com/GPUGems3/gpugems3_ch39.html

Summed Area Table

1 1 0 2

1 2 1 0

0 1 2 0

2 1 0 0

Input image SAT

Summed Area Table

1 1 0 2

1 2 1 0

0 1 2 0

2 1 0 0

Input image

1

SAT

18

Summed Area Table

1 1 0 2

1 2 1 0

0 1 2 0

2 1 0 0

Input image

1 2

SAT

Summed Area Table

1 1 0 2

1 2 1 0

0 1 2 0

2 1 0 0

Input image

1 2 2

SAT

Summed Area Table

1 1 0 2

1 2 1 0

0 1 2 0

2 1 0 0

Input image

1 2 2 4

SAT

Summed Area Table

1 1 0 2

1 2 1 0

0 1 2 0

2 1 0 0

Input image

1 2 2 4

2

SAT

19

Summed Area Table

1 1 0 2

1 2 1 0

0 1 2 0

2 1 0 0

Input image

1 2 2 4

2 5

SAT

Summed Area Table

…

Summed Area Table

1 1 0 2

1 2 1 0

0 1 2 0

2 1 0 0

Input image

1 2 2 4

2 5 6 8

2 6 9 11

4 9

SAT

Summed Area Table

1 1 0 2

1 2 1 0

0 1 2 0

2 1 0 0

Input image

1 2 2 4

2 5 6 8

2 6 9 11

4 9 12

SAT

20

Summed Area Table

1 1 0 2

1 2 1 0

0 1 2 0

2 1 0 0

Input image

1 2 2 4

2 5 6 8

2 6 9 11

4 9 12 14

SAT

Summed Area Table

How would implement
this on the GPU?

Summed Area Table

How would compute a
SAT on the GPU using

inclusive scan?

Summed Area Table

1 1 0 2

1 2 1 0

0 1 2 0

2 1 0 0

Input image

1 2 2 4

1 3 4 4

0 1 3 3

2 3 3 3

Partial SAT

One inclusive scan for each row

� Step 1 of 2:

21

Summed Area Table

1 2 2 4

1 3 4 4

0 1 3 3

2 3 3 3

Partial SAT

One inclusive scan for each
column, bottom to top

� Step 2 of 2:

1 2 2 4

2 5 6 8

2 6 9 11

4 9 12 14

Final SAT

Summary

� Parallel reductions and scan are building
blocks for many algorithms
� An understanding of parallel programming

and GPU architecture yields efficient GPU
implementations

