
1

Introduction to
CUDA (1 of 2)

Patrick Cozzi
University of Pennsylvania
CIS 565 - Spring 2012

Announcements

� IBM Almaden

� Readings listed on our website
� Clone your git repository

Image from http://www.almaden.ibm.com/

Acknowledgements

� Many slides are from David Kirk and Wen-
mei Hwu’s UIUC course:
� http://courses.engr.illinois.edu/ece498/al/

Agenda

� Parallelism Review
� GPU Architecture Review
� CUDA

2

Parallelism Review

� Pipeline Parallel
�Pipelined processors
�Graphics pipeline

Parallelism Review

� Task Parallel
�Spell checker
�Game engines
�Virtual globes

Image from: http://www.gamasutra.com/view/feature/2463/threading_3d_game_engine_basics.php

Parallelism Review

� Data Parallel
�Cloth simulation
�Particle system
�Matrix multiply

Image from: https://plus.google.com/u/0/photos/100838748547881402137/albums/5407605084626995217/5581900335460078306

Matrix Multiply Reminder

� Vectors
� Dot products
� Row major or column major?
� Dot product per output element

3

GPU Architecture Review

� GPUs are:
�Parallel
�Multithreaded
�Many-core

� GPUs have:
�Tremendous computational horsepower
�High memory bandwidth

GPU Architecture Review

� GPUs are specialized for
�Compute-intensive, highly parallel computation
�Graphics!

� Transistors are devoted to:
�Processing
�Not:
� Data caching

� Flow control

GPU Architecture Review

Image from: http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/CUDA_C_Programming_Guide.pdf

Transistor Usage

Let’s program
this thing!

4

GPU Computing History

� 2001/2002 – researchers see GPU as data-
parallel coprocessor
�The GPGPU field is born

� 2007 – NVIDIA releases CUDA
�CUDA – Compute Uniform Device Architecture
�GPGPU shifts to GPU Computing

� 2008 – Khronos releases OpenCL
specification

CUDA Abstractions

� A hierarchy of thread groups
� Shared memories
� Barrier synchronization

CUDA Terminology

� Host – typically the CPU
�Code written in ANSI C

� Device – typically the GPU (data-parallel)
�Code written in extended ANSI C

� Host and device have separate memories
� CUDA Program
�Contains both host and device code

CUDA Terminology

� Kernel – data-parallel function
� Invoking a kernel creates lightweight threads

on the device
� Threads are generated and scheduled with

hardware

� Similar to a shader in OpenGL?

5

CUDA Kernels

� Executed N times in parallel by N different
CUDA threads

Thread ID

Execution
Configuration

Declaration
Specifier

CUDA Program Execution

Image from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

Thread Hierarchies

� Grid – one or more thread blocks
�1D or 2D

� Block – array of threads
�1D, 2D, or 3D
�Each block in a grid has the same number of

threads
�Each thread in a block can
� Synchronize

� Access shared memory

Thread Hierarchies

Image from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

6

Thread Hierarchies

� Block – 1D, 2D, or 3D
�Example: Index into vector, matrix, volume

Thread Hierarchies

� Thread ID: Scalar thread identifier
� Thread Index: threadIdx

� 1D: Thread ID == Thread Index
� 2D with size (Dx, Dy)
�Thread ID of index (x, y) == x + y Dy

� 3D with size (Dx, Dy, Dz)
�Thread ID of index (x, y, z) == x + y Dy + z Dx Dy

Thread Hierarchies

1 Thread Block 2D Block

2D Index

Thread Hierarchies

� Thread Block
�Group of threads
� G80 and GT200: Up to 512 threads

� Fermi: Up to 1024 threads

�Reside on same processor core
�Share memory of that core

7

Thread Hierarchies

� Thread Block
�Group of threads
� G80 and GT200: Up to 512 threads

� Fermi: Up to 1024 threads

�Reside on same processor core
�Share memory of that core

Image from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

Thread Hierarchies

� Block Index: blockIdx
� Dimension: blockDim
�1D or 2D

Thread Hierarchies

2D Thread Block

16x16
Threads per block

Thread Hierarchies

� Example: N = 32
�16x16 threads per block (independent of N)
� threadIdx ([0, 15], [0, 15])

�2x2 thread blocks in grid
� blockIdx ([0, 1], [0, 1])

� blockDim = 16

� i = [0, 1] * 16 + [0, 15]

8

Thread Hierarchies

� Thread blocks execute independently
� In any order: parallel or series
�Scheduled in any order by any number of

cores
� Allows code to scale with core count

Thread Hierarchies

Image from: http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/CUDA_C_Programming_Guide.pdf

Thread Hierarchies

� Threads in a block
�Share (limited) low-latency memory
�Synchronize execution
� To coordinate memory accesses
� __syncThreads()

� Barrier – threads in block wait until all threads reach this

� Lightweight

Image from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

CUDA Memory Transfers

Image from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

9

CUDA Memory Transfers

� Host can transfer to/from device
�Global memory
�Constant memory

Image from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

CUDA Memory Transfers

� cudaMalloc()
�Allocate global memory on device

� cudaFree()

�Frees memory

Image from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

CUDA Memory Transfers

Code from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

CUDA Memory Transfers

Code from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

Pointer to device memory

10

CUDA Memory Transfers

Code from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

Size in bytes

CUDA Memory Transfers

� cudaMemcpy()

�Memory transfer
� Host to host

� Host to device
� Device to host
� Device to device

Host Device

Global Memory

� Similar to buffer objects in OpenGL

CUDA Memory Transfers

� cudaMemcpy()

�Memory transfer
� Host to host

� Host to device
� Device to host
� Device to device

Host Device

Global Memory

CUDA Memory Transfers

� cudaMemcpy()

�Memory transfer
� Host to host

� Host to device
� Device to host
� Device to device

Host Device

Global Memory

11

CUDA Memory Transfers

� cudaMemcpy()

�Memory transfer
� Host to host

� Host to device
� Device to host
� Device to device

Host Device

Global Memory

CUDA Memory Transfers

� cudaMemcpy()

�Memory transfer
� Host to host

� Host to device
� Device to host
� Device to device

Host Device

Global Memory

CUDA Memory Transfers

Code from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

Host Device

Global Memory

Host to device

CUDA Memory Transfers

Code from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

Host Device

Global Memory

Source (host)Destination (device)

12

CUDA Memory Transfers

Code from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

Host Device

Global Memory

Matrix Multiply

Image from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

� P = M * N

� Assume M and N are
square for simplicity

Matrix Multiply

� 1,000 x 1,000 matrix
� 1,000,000 dot products
� Each 1,000 multiples and 1,000 adds

Matrix Multiply: CPU Implementation

Code from: http://courses.engr.illinois.edu/ece498/al/lectures/lecture3%20cuda%20threads%20spring%202010.ppt

void MatrixMulOnHost(float* M, float* N, float* P, int width)
{

for (int i = 0; i < width; ++i)
for (int j = 0; j < width; ++j)
{

float sum = 0;
for (int k = 0; k < width; ++k)
{

float a = M[i * width + k];
float b = N[k * width + j];
sum += a * b;

}
P[i * width + j] = sum;

}
}

13

Matrix Multiply: CUDA Skeleton

Code from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

Matrix Multiply: CUDA Skeleton

Code from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

Matrix Multiply: CUDA Skeleton

Code from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

Matrix Multiply

� Step 1
�Add CUDA memory transfers to the skeleton

14

Matrix Multiply: Data Transfer

Code from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

Allocate input

Matrix Multiply: Data Transfer

Code from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

Allocate output

Matrix Multiply: Data Transfer

Code from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

Matrix Multiply: Data Transfer

Code from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

Read back
from device

15

Matrix Multiply: Data Transfer

Code from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

� Similar to GPGPU with GLSL.

Matrix Multiply

� Step 2
� Implement the kernel in CUDA C

Matrix Multiply: CUDA Kernel

Code from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

Accessing a matrix, so using a 2D block

Matrix Multiply: CUDA Kernel

Code from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

Each kernel computes one output

16

Matrix Multiply: CUDA Kernel

Code from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

Where did the two outer for loops
in the CPU implementation go?

Matrix Multiply: CUDA Kernel

Code from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

No locks or synchronization, why?

Matrix Multiply

� Step 3
� Invoke the kernel in CUDA C

Matrix Multiply: Invoke Kernel

Code from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

One block with width
by width threads

17

Matrix Multiply

65

� One Block of threads compute
matrix Pd
� Each thread computes one element

of Pd

� Each thread
� Loads a row of matrix Md
� Loads a column of matrix Nd
� Perform one multiply and addition

for each pair of Md and Nd
elements
� Compute to off-chip memory

access ratio close to 1:1 (not very
high)

� Size of matrix limited by the number
of threads allowed in a thread block

Grid 1

Block 1

3 2 5 4

2

4

2

6

48

Thread
(2, 2)

WIDTH

Md Pd

Nd

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign

Slide from: http://courses.engr.illinois.edu/ece498/al/lectures/lecture2%20cuda%20spring%2009.ppt

Matrix Multiply

� What is the major performance problem
with our implementation?
� What is the major limitation?

